Abstract:Autonomous racing has gained increasing attention in recent years, as a safe environment to accelerate the development of motion planning and control methods for autonomous driving. Deep learning models, predominantly based on neural networks (NNs), have demonstrated significant potential in modeling the vehicle dynamics and in performing various tasks in autonomous driving. However, their black-box nature is critical in the context of autonomous racing, where safety and robustness demand a thorough understanding of the decision-making algorithms. To address this challenge, this paper proposes MS-NN-steer, a new Model-Structured Neural Network for vehicle steering control, integrating the prior knowledge of the nonlinear vehicle dynamics into the neural architecture. The proposed controller is validated using real-world data from the Abu Dhabi Autonomous Racing League (A2RL) competition, with full-scale autonomous race cars. In comparison with general-purpose NNs, MS-NN-steer is shown to achieve better accuracy and generalization with small training datasets, while being less sensitive to the weights' initialization. Also, MS-NN-steer outperforms the steering controller used by the A2RL winning team. Our implementation is available open-source in a GitHub repository.
Abstract:In this work, we present a novel approach to bias the driving style of an artificial race driver (ARD) for online time-optimal trajectory planning. Our method leverages a nonlinear model predictive control (MPC) framework that combines time minimization with exit speed maximization at the end of the planning horizon. We introduce a new MPC terminal cost formulation based on the trajectory planned in the previous MPC step, enabling ARD to adapt its driving style from early to late apex maneuvers in real-time. Our approach is computationally efficient, allowing for low replan times and long planning horizons. We validate our method through simulations, comparing the results against offline minimum-lap-time (MLT) optimal control and online minimum-time MPC solutions. The results demonstrate that our new terminal cost enables ARD to bias its driving style, and achieve online lap times close to the MLT solution and faster than the minimum-time MPC solution. Our approach paves the way for a better understanding of the reasons behind human drivers' choice of early or late apex maneuvers.
Abstract:Online planning and execution of minimum-time maneuvers on three-dimensional (3D) circuits is an open challenge in autonomous vehicle racing. In this paper, we present an artificial race driver (ARD) to learn the vehicle dynamics, plan and execute minimum-time maneuvers on a 3D track. ARD integrates a novel kineto-dynamical (KD) vehicle model for trajectory planning with economic nonlinear model predictive control (E-NMPC). We use a high-fidelity vehicle simulator (VS) to compare the closed-loop ARD results with a minimum-lap-time optimal control problem (MLT-VS), solved offline with the same VS. Our ARD sets lap times close to the MLT-VS, and the new KD model outperforms a literature benchmark. Finally, we study the vehicle trajectories, to assess the re-planning capabilities of ARD under execution errors. A video with the main results is available as supplementary material.