Prenatal psychological stress affects 15-25% of pregnancies and increases risks of preterm birth, low birth weight, and adverse neurodevelopmental outcomes. Current screening relies on subjective questionnaires (PSS-10), limiting continuous monitoring. We developed deep learning models for stress detection from electrocardiography (ECG) using the FELICITy 1 cohort (151 pregnant women, 32-38 weeks gestation). A ResNet-34 encoder was pretrained via SimCLR contrastive learning on 40,692 ECG segments per subject. Multi-layer feature extraction enabled binary classification and continuous PSS prediction across maternal (mECG), fetal (fECG), and abdominal ECG (aECG). External validation used the FELICITy 2 RCT (28 subjects, different ECG device, yoga intervention vs. control). On FELICITy 1 (5-fold CV): mECG 98.6% accuracy (R2=0.88, MAE=1.90), fECG 99.8% (R2=0.95, MAE=1.19), aECG 95.5% (R2=0.75, MAE=2.80). External validation on FELICITy 2: mECG 77.3% accuracy (R2=0.62, MAE=3.54, AUC=0.826), aECG 63.6% (R2=0.29, AUC=0.705). Signal quality-based channel selection outperformed all-channel averaging (+12% R2 improvement). Mixed-effects models detected a significant intervention response (p=0.041). Self-supervised deep learning on pregnancy ECG enables accurate, objective stress assessment, with multi-layer feature extraction substantially outperforming single embedding approaches.
Self-supervised speaker embeddings are widely used in speaker verification systems, but prior work has shown that they often encode sensitive demographic attributes, raising fairness and privacy concerns. This paper investigates the extent to which demographic information, specifically gender, age, and accent, is present in SimCLR-trained speaker embeddings and whether such leakage can be mitigated without severely degrading speaker verification performance. We study two debiasing strategies: adversarial training through gradient reversal and a causal bottleneck architecture that explicitly separates demographic and residual information. Demographic leakage is quantified using both linear and nonlinear probing classifiers, while speaker verification performance is evaluated using ROC-AUC and EER. Our results show that gender information is strongly and linearly encoded in baseline embeddings, whereas age and accent are weaker and primarily nonlinearly represented. Adversarial debiasing reduces gender leakage but has limited effect on age and accent and introduces a clear trade-off with verification accuracy. The causal bottleneck further suppresses demographic information, particularly in the residual representation, but incurs substantial performance degradation. These findings highlight fundamental limitations in mitigating demographic leakage in self-supervised speaker embeddings and clarify the trade-offs inherent in current debiasing approaches.
Subspace clustering aims to group data points that lie in a union of low-dimensional subspaces and finds wide application in computer vision, hyperspectral imaging, and recommendation systems. However, most existing methods assume fully observed data, limiting their effectiveness in real-world scenarios with missing entries. In this paper, we propose a contrastive self-supervised framework, Contrastive Subspace Clustering (CSC), designed for clustering incomplete data. CSC generates masked views of partially observed inputs and trains a deep neural network using a SimCLR-style contrastive loss to learn invariant embeddings. These embeddings are then clustered using sparse subspace clustering. Experiments on six benchmark datasets show that CSC consistently outperforms both classical and deep learning baselines, demonstrating strong robustness to missing data and scalability to large datasets.
Intelligent medical image analysis is essential for clinical decision support but is often limited by scarce annotations, constrained computational resources, and suboptimal model generalization. To address these challenges, we propose a lightweight medical image classification framework that integrates self-supervised contrastive learning with quantum-enhanced feature modeling. MobileNetV2 is employed as a compact backbone and pretrained using a SimCLR-style self-supervised paradigm on unlabeled images. A lightweight parameterized quantum circuit (PQC) is embedded as a quantum feature enhancement module, forming a hybrid classical-quantum architecture, which is subsequently fine-tuned on limited labeled data. Experimental results demonstrate that, with only approximately 2-3 million parameters and low computational cost, the proposed method consistently outperforms classical baselines without self-supervised learning or quantum enhancement in terms of Accuracy, AUC, and F1-score. Feature visualization further indicates improved discriminability and representation stability. Overall, this work provides a practical and forward-looking solution for high-performance medical artificial intelligence under resource-constrained settings.
Identifying unique polyps in colon capsule endoscopy (CCE) images is a critical yet challenging task for medical personnel due to the large volume of images, the cognitive load it creates for clinicians, and the ambiguity in labeling specific frames. This paper formulates this problem as a multi-instance learning (MIL) task, where a query polyp image is compared with a target bag of images to determine uniqueness. We employ a multi-instance verification (MIV) framework that incorporates attention mechanisms, such as variance-excited multi-head attention (VEMA) and distance-based attention (DBA), to enhance the model's ability to extract meaningful representations. Additionally, we investigate the impact of self-supervised learning using SimCLR to generate robust embeddings. Experimental results on a dataset of 1912 polyps from 754 patients demonstrate that attention mechanisms significantly improve performance, with DBA L1 achieving the highest test accuracy of 86.26\% and a test AUC of 0.928 using a ConvNeXt backbone with SimCLR pretraining. This study underscores the potential of MIL and self-supervised learning in advancing automated analysis of Colon Capsule Endoscopy images, with implications for broader medical imaging applications.
Recent advances in contextualized word embeddings have greatly improved semantic tasks such as Word Sense Disambiguation (WSD) and contextual similarity, but most progress has been limited to high-resource languages like English. Vietnamese, in contrast, still lacks robust models and evaluation resources for fine-grained semantic understanding. In this paper, we present ViConBERT, a novel framework for learning Vietnamese contextualized embeddings that integrates contrastive learning (SimCLR) and gloss-based distillation to better capture word meaning. We also introduce ViConWSD, the first large-scale synthetic dataset for evaluating semantic understanding in Vietnamese, covering both WSD and contextual similarity. Experimental results show that ViConBERT outperforms strong baselines on WSD (F1 = 0.87) and achieves competitive performance on ViCon (AP = 0.88) and ViSim-400 (Spearman's rho = 0.60), demonstrating its effectiveness in modeling both discrete senses and graded semantic relations. Our code, models, and data are available at https://github.com/tkhangg0910/ViConBERT
Generative modeling, representation learning, and classification are three core problems in machine learning (ML), yet their state-of-the-art (SoTA) solutions remain largely disjoint. In this paper, we ask: Can a unified principle address all three? Such unification could simplify ML pipelines and foster greater synergy across tasks. We introduce Latent Zoning Network (LZN) as a step toward this goal. At its core, LZN creates a shared Gaussian latent space that encodes information across all tasks. Each data type (e.g., images, text, labels) is equipped with an encoder that maps samples to disjoint latent zones, and a decoder that maps latents back to data. ML tasks are expressed as compositions of these encoders and decoders: for example, label-conditional image generation uses a label encoder and image decoder; image embedding uses an image encoder; classification uses an image encoder and label decoder. We demonstrate the promise of LZN in three increasingly complex scenarios: (1) LZN can enhance existing models (image generation): When combined with the SoTA Rectified Flow model, LZN improves FID on CIFAR10 from 2.76 to 2.59-without modifying the training objective. (2) LZN can solve tasks independently (representation learning): LZN can implement unsupervised representation learning without auxiliary loss functions, outperforming the seminal MoCo and SimCLR methods by 9.3% and 0.2%, respectively, on downstream linear classification on ImageNet. (3) LZN can solve multiple tasks simultaneously (joint generation and classification): With image and label encoders/decoders, LZN performs both tasks jointly by design, improving FID and achieving SoTA classification accuracy on CIFAR10. The code and trained models are available at https://github.com/microsoft/latent-zoning-networks. The project website is at https://zinanlin.me/blogs/latent_zoning_networks.html.
This study addresses critical industrial challenges in e-commerce product categorization, namely platform heterogeneity and the structural limitations of existing taxonomies, by developing and deploying a multimodal hierarchical classification framework. Using a dataset of 271,700 products from 40 international fashion e-commerce platforms, we integrate textual features (RoBERTa), visual features (ViT), and joint vision--language representations (CLIP). We investigate fusion strategies, including early, late, and attention-based fusion within a hierarchical architecture enhanced by dynamic masking to ensure taxonomic consistency. Results show that CLIP embeddings combined via an MLP-based late-fusion strategy achieve the highest hierarchical F1 (98.59\%), outperforming unimodal baselines. To address shallow or inconsistent categories, we further introduce a self-supervised ``product recategorization'' pipeline using SimCLR, UMAP, and cascade clustering, which discovered new, fine-grained categories (e.g., subtypes of ``Shoes'') with cluster purities above 86\%. Cross-platform experiments reveal a deployment-relevant trade-off: complex late-fusion methods maximize accuracy with diverse training data, while simpler early-fusion methods generalize more effectively to unseen platforms. Finally, we demonstrate the framework's industrial scalability through deployment in EURWEB's commercial transaction intelligence platform via a two-stage inference pipeline, combining a lightweight RoBERTa stage with a GPU--accelerated multimodal stage to balance cost and accuracy.
Vision-Language Models (VLMs) have achieved remarkable success on multimodal tasks such as image-text retrieval and zero-shot classification, yet they can exhibit demographic biases even when explicit protected attributes are absent during training. In this work, we focus on automated glaucoma screening from retinal fundus images, a critical application given that glaucoma is a leading cause of irreversible blindness and disproportionately affects underserved populations. Building on a reweighting-based contrastive learning framework, we introduce an attribute-agnostic debiasing method that (i) infers proxy subgroups via unsupervised clustering of image-image embeddings, (ii) computes gradient-similarity weights between the CLIP-style multimodal loss and a SimCLR-style image-pair contrastive loss, and (iii) applies these weights in a joint, top-$k$ weighted objective to upweight underperforming clusters. This label-free approach adaptively targets the hardest examples, thereby reducing subgroup disparities. We evaluate our method on the Harvard FairVLMed glaucoma subset, reporting Equalized Odds Distance (EOD), Equalized Subgroup AUC (ES AUC), and Groupwise AUC to demonstrate equitable performance across inferred demographic subgroups.
Deterministic embeddings learned by contrastive learning (CL) methods such as SimCLR and SupCon achieve state-of-the-art performance but lack a principled mechanism for uncertainty quantification. We propose Variational Contrastive Learning (VCL), a decoder-free framework that maximizes the evidence lower bound (ELBO) by interpreting the InfoNCE loss as a surrogate reconstruction term and adding a KL divergence regularizer to a uniform prior on the unit hypersphere. We model the approximate posterior $q_\theta(z|x)$ as a projected normal distribution, enabling the sampling of probabilistic embeddings. Our two instantiations--VSimCLR and VSupCon--replace deterministic embeddings with samples from $q_\theta(z|x)$ and incorporate a normalized KL term into the loss. Experiments on multiple benchmarks demonstrate that VCL mitigates dimensional collapse, enhances mutual information with class labels, and matches or outperforms deterministic baselines in classification accuracy, all the while providing meaningful uncertainty estimates through the posterior model. VCL thus equips contrastive learning with a probabilistic foundation, serving as a new basis for contrastive approaches.