Patients suffering chronic severe pulmonary thromboembolism need Pulmonary Thromboendarterectomy (PTE) to remove the thromb and intima located inside pulmonary artery (PA). During the surgery, a surgeon holds tweezers and a dissector to delicately strip the blockage, but available tools for this surgery are rigid and straight, lacking distal dexterity to access into thin branches of PA. Therefore, this work presents a novel robotized dissector based on concentric push/pull robot (CPPR) structure, enabling entering deep thin branch of tortuous PA. Compared with conventional rigid dissectors, our design characterizes slenderness and dual-segment-bending dexterity. Owing to the hollow and thin-walled structure of the CPPR-based dissector as it has a slender body of 3.5mm in diameter, the central lumen accommodates two channels for irrigation and tip tool, and space for endoscopic camera's signal wire. To provide accurate surgical manipulation, optimization-based kinematics model was established, realizing a 2mm accuracy in positioning the tip tool (60mm length) under open-loop control strategy. As such, with the endoscopic camera, traditional PTE is possible to be upgraded as endoscopic PTE. Basic physic performance of the robotized dissector including stiffness, motion accuracy and maneuverability was evaluated through experiments. Surgery simulation on ex vivo porcine lung also demonstrates its dexterity and notable advantages in PTE.
Pulmonary trees extracted from CT images frequently exhibit topological incompleteness, such as missing or disconnected branches, which substantially degrades downstream anatomical analysis and limits the applicability of existing pulmonary tree modeling pipelines. Current approaches typically rely on dense volumetric processing or explicit graph reasoning, leading to limited efficiency and reduced robustness under realistic structural corruption. We propose TopoField, a topology-aware implicit modeling framework that treats topology repair as a first-class modeling problem and enables unified multi-task inference for pulmonary tree analysis. TopoField represents pulmonary anatomy using sparse surface and skeleton point clouds and learns a continuous implicit field that supports topology repair without relying on complete or explicit disconnection annotations, by training on synthetically introduced structural disruptions over \textit{already} incomplete trees. Building upon the repaired implicit representation, anatomical labeling and lung segment reconstruction are jointly inferred through task-specific implicit functions within a single forward pass.Extensive experiments on the Lung3D+ dataset demonstrate that TopoField consistently improves topological completeness and achieves accurate anatomical labeling and lung segment reconstruction under challenging incomplete scenarios. Owing to its implicit formulation, TopoField attains high computational efficiency, completing all tasks in just over one second per case, highlighting its practicality for large-scale and time-sensitive clinical applications. Code and data will be available at https://github.com/HINTLab/TopoField.
The limited sample size and insufficient diversity of lung nodule CT datasets severely restrict the performance and generalization ability of detection models. Existing methods generate images with insufficient diversity and controllability, suffering from issues such as monotonous texture features and distorted anatomical structures. Therefore, we propose a two-stage generative adversarial network (TSGAN) to enhance the diversity and spatial controllability of synthetic data by decoupling the morphological structure and texture features of lung nodules. In the first stage, StyleGAN is used to generate semantic segmentation mask images, encoding lung nodules and tissue backgrounds to control the anatomical structure of lung nodule images; The second stage uses the DL-Pix2Pix model to translate the mask map into CT images, employing local importance attention to capture local features, while utilizing dynamic weight multi-head window attention to enhance the modeling capability of lung nodule texture and background. Compared to the original dataset, the accuracy improved by 4.6% and mAP by 4% on the LUNA16 dataset. Experimental results demonstrate that TSGAN can enhance the quality of synthetic images and the performance of detection models.
Lung cancer remains the leading cause of cancer mortality, driving the development of automated screening tools to alleviate radiologist workload. Standing at the frontier of this effort is Sybil, a deep learning model capable of predicting future risk solely from computed tomography (CT) with high precision. However, despite extensive clinical validation, current assessments rely purely on observational metrics. This correlation-based approach overlooks the model's actual reasoning mechanism, necessitating a shift to causal verification to ensure robust decision-making before clinical deployment. We propose S(H)NAP, a model-agnostic auditing framework that constructs generative interventional attributions validated by expert radiologists. By leveraging realistic 3D diffusion bridge modeling to systematically modify anatomical features, our approach isolates object-specific causal contributions to the risk score. Providing the first interventional audit of Sybil, we demonstrate that while the model often exhibits behavior akin to an expert radiologist, differentiating malignant pulmonary nodules from benign ones, it suffers from critical failure modes, including dangerous sensitivity to clinically unjustified artifacts and a distinct radial bias.
Unsupervised deformable image registration requires aligning complex anatomical structures without reference labels, making interpretability and reliability critical. Existing deep learning methods achieve considerable accuracy but often lack transparency, leading to error drift and reduced clinical trust. We propose a novel Multi-Hop Visual Chain of Reasoning (VCoR) framework that reformulates registration as a progressive reasoning process. Inspired by the iterative nature of clinical decision-making, each visual reasoning hop integrates a Localized Spatial Refinement (LSR) module to enrich feature representations and a Cross-Reference Attention (CRA) mechanism that leads the iterative refinement process, preserving anatomical consistency. This multi-hop strategy enables robust handling of large deformations and produces a transparent sequence of intermediate predictions with a theoretical bound. Beyond accuracy, our framework offers built-in interpretability by estimating uncertainty via the stability and convergence of deformation fields across hops. Extensive evaluations on two challenging public datasets, DIR-Lab 4D CT (lung) and IXI T1-weighted MRI (brain), demonstrate that VCoR achieves competitive registration accuracy while offering rich intermediate visualizations and confidence measures. By embedding an implicit visual reasoning paradigm, we present an interpretable, reliable, and clinically viable unsupervised medical image registration.
Multimodal fusion has emerged as a promising paradigm for disease diagnosis and prognosis, integrating complementary information from heterogeneous data sources such as medical images, clinical records, and radiology reports. However, existing fusion methods process all available modalities through the network, either treating them equally or learning to assign different contribution weights, leaving a fundamental question unaddressed: for a given patient, should certain modalities be used at all? We present AdaFuse, an adaptive multimodal fusion framework that leverages reinforcement learning (RL) to learn patient-specific modality selection and fusion strategies for lung cancer risk prediction. AdaFuse formulates multimodal fusion as a sequential decision process, where the policy network iteratively decides whether to incorporate an additional modality or proceed to prediction based on the information already acquired. This sequential formulation enables the model to condition each selection on previously observed modalities and terminate early when sufficient information is available, rather than committing to a fixed subset upfront. We evaluate AdaFuse on the National Lung Screening Trial (NLST) dataset. Experimental results demonstrate that AdaFuse achieves the highest AUC (0.762) compared to the best single-modality baseline (0.732), the best fixed fusion strategy (0.759), and adaptive baselines including DynMM (0.754) and MoE (0.742), while using fewer FLOPs than all triple-modality methods. Our work demonstrates the potential of reinforcement learning for personalized multimodal fusion in medical imaging, representing a shift from uniform fusion strategies toward adaptive diagnostic pipelines that learn when to consult additional modalities and when existing information suffices for accurate prediction.
Foundation models pretrained on large-scale histopathology data have found great success in various fields of computational pathology, but their impact on regressive biomarker prediction remains underexplored. In this work, we systematically evaluate histopathological foundation models for regression-based tasks, demonstrated through the prediction of homologous recombination deficiency (HRD) score - a critical biomarker for personalized cancer treatment. Within multiple instance learning frameworks, we extract patch-level features from whole slide images (WSI) using five state-of-the-art foundation models, and evaluate their impact compared to contrastive learning-based features. Models are trained to predict continuous HRD scores based on these extracted features across breast, endometrial, and lung cancer cohorts from two public medical data collections. Extensive experiments demonstrate that models trained on foundation model features consistently outperform the baseline in terms of predictive accuracy and generalization capabilities while exhibiting systematic differences among the foundation models. Additionally, we propose a distribution-based upsampling strategy to mitigate target imbalance in these datasets, significantly improving the recall and balanced accuracy for underrepresented but clinically important patient populations. Furthermore, we investigate the impact of different sampling strategies and instance bagsizes by ablation studies. Our results highlight the benefits of large-scale histopathological pretraining for more precise and transferable regressive biomarker prediction, showcasing its potential to advance AI-driven precision oncology.
Multidisciplinary tumour boards (MDTBs) play a central role in oncology decision-making but require manual processes and structuring large volumes of heterogeneous clinical information, resulting in a substantial documentation burden. In this work, we present ONCOTIMIA, a modular and secure clinical tool designed to integrate generative artificial intelligence (GenAI) into oncology workflows and evaluate its application to the automatic completion of lung cancer tumour board forms using large language models (LLMs). The system combines a multi-layer data lake, hybrid relational and vector storage, retrieval-augmented generation (RAG) and a rule-driven adaptive form model to transform unstructured clinical documentation into structured and standardised tumour board records. We assess the performance of six LLMs deployed through AWS Bedrock on ten lung cancer cases, measuring both completion form accuracy and end-to-end latency. The results demonstrate high performance across models, with the best performing configuration achieving an 80% of correct field completion and clinically acceptable response time for most LLMs. Larger and more recent models exhibit best accuracies without incurring prohibitive latency. These findings provide empirical evidence that LLM- assisted autocompletion form is technically feasible and operationally viable in multidisciplinary lung cancer workflows and support its potential to significantly reduce documentation burden while preserving data quality.
Using multiple open-access models trained on public datasets, we developed Tri-Reader, a comprehensive, freely available pipeline that integrates lung segmentation, nodule detection, and malignancy classification into a unified tri-stage workflow. The pipeline is designed to prioritize sensitivity while reducing the candidate burden for annotators. To ensure accuracy and generalizability across diverse practices, we evaluated Tri-Reader on multiple internal and external datasets as compared with expert annotations and dataset-provided reference standards.
Due to silence in early stages, lung cancer has been one of the most leading causes of mortality in cancer patients world-wide. Moreover, major symptoms of lung cancer are hard to differentiate with other respiratory disease symptoms such as COPD, further leading patients to overlook cancer progression in early stages. Thus, to enhance survival rates in lung cancer, early detection from consistent proactive respiratory system monitoring becomes crucial. One of the most prevalent and effective methods for lung cancer monitoring would be low-dose computed tomography(LDCT) chest scans, which led to remarkable enhancements in lung cancer detection or tumor classification tasks under rapid advancements and applications of computer vision based AI models such as EfficientNet or ResNet in image processing. However, though advanced CNN models under transfer learning or ViT based models led to high performing lung cancer detections, due to its intrinsic limitations in terms of correlation dependence and low interpretability due to complexity, expansions of deep learning models to lung cancer treatment analysis or causal intervention analysis simulations are still limited. Therefore, this research introduced LungCRCT: a latent causal representation learning based lung cancer analysis framework that retrieves causal representations of factors within the physical causal mechanism of lung cancer progression. With the use of advanced graph autoencoder based causal discovery algorithms with distance Correlation disentanglement and entropy-based image reconstruction refinement, LungCRCT not only enables causal intervention analysis for lung cancer treatments, but also leads to robust, yet extremely light downstream models in malignant tumor classification tasks with an AUC score of 93.91%.