What is Image Restoration? Image restoration is the process of improving the quality of an image by removing noise, blurring, or other distortions.
Papers and Code
Jul 03, 2025
Abstract:Current methods for restoring underexposed images typically rely on supervised learning with paired underexposed and well-illuminated images. However, collecting such datasets is often impractical in real-world scenarios. Moreover, these methods can lead to over-enhancement, distorting well-illuminated regions. To address these issues, we propose IGDNet, a Zero-Shot enhancement method that operates solely on a single test image, without requiring guiding priors or training data. IGDNet exhibits strong generalization ability and effectively suppresses noise while restoring illumination. The framework comprises a decomposition module and a denoising module. The former separates the image into illumination and reflection components via a dense connection network, while the latter enhances non-uniformly illuminated regions using an illumination-guided pixel adaptive correction method. A noise pair is generated through downsampling and refined iteratively to produce the final result. Extensive experiments on four public datasets demonstrate that IGDNet significantly improves visual quality under complex lighting conditions. Quantitative results on metrics like PSNR (20.41dB) and SSIM (0.860dB) show that it outperforms 14 state-of-the-art unsupervised methods. The code will be released soon.
* Submitted to IEEE Transactions on Artificial Intelligence (TAI) on
Oct.31, 2024
Via

Jul 03, 2025
Abstract:Enhancing underwater images is crucial for exploration. These images face visibility and color issues due to light changes, water turbidity, and bubbles. Traditional prior-based methods and pixel-based methods often fail, while deep learning lacks sufficient high-quality datasets. We introduce the Multi-Axis Conditional Lookup (MAC-Lookup) model, which enhances visual quality by improving color accuracy, sharpness, and contrast. It includes Conditional 3D Lookup Table Color Correction (CLTCC) for preliminary color and quality correction and Multi-Axis Adaptive Enhancement (MAAE) for detail refinement. This model prevents over-enhancement and saturation while handling underwater challenges. Extensive experiments show that MAC-Lookup excels in enhancing underwater images by restoring details and colors better than existing methods. The code is https://github.com/onlycatdoraemon/MAC-Lookup.
* Accepted by IEEE SMC 2025
Via

Jul 03, 2025
Abstract:Denoising diffusion models produce high-fidelity image samples by capturing the image distribution in a progressive manner while initializing with a simple distribution and compounding the distribution complexity. Although these models have unlocked new applicabilities, the sampling mechanism of diffusion does not offer means to extract image-specific semantic representation, which is inherently provided by auto-encoders. The encoding component of auto-encoders enables mapping between a specific image and its latent space, thereby offering explicit means of enforcing structures in the latent space. By integrating an encoder with the diffusion model, we establish an auto-encoding formulation, which learns image-specific representations and offers means to organize the latent space. In this work, First, we devise a mechanism to structure the latent space of a diffusion auto-encoding model, towards recognizing region-specific cellular patterns in brain images. We enforce the representations to regress positional information of the patches from high-resolution images. This creates a conducive latent space for differentiating tissue types of the brain. Second, we devise an unsupervised tear artifact restoration technique based on neighborhood awareness, utilizing latent representations and the constrained generation capability of diffusion models during inference. Third, through representational guidance and leveraging the inference time steerable noising and denoising capability of diffusion, we devise an unsupervised JPEG artifact restoration technique.
* Published in IEEE Journal of Biomedical and Health Informatics (Early
Access Available) https://ieeexplore.ieee.org/document/10989734
Via

Jul 02, 2025
Abstract:By incorporating visual inputs, Multimodal Large Language Models (MLLMs) extend LLMs to support visual reasoning. However, this integration also introduces new vulnerabilities, making MLLMs susceptible to multimodal jailbreak attacks and hindering their safe deployment.Existing defense methods, including Image-to-Text Translation, Safe Prompting, and Multimodal Safety Tuning, attempt to address this by aligning multimodal inputs with LLMs' built-in safeguards.Yet, they fall short in uncovering root causes of multimodal vulnerabilities, particularly how harmful multimodal tokens trigger jailbreak in MLLMs? Consequently, they remain vulnerable to text-driven multimodal jailbreaks, often exhibiting overdefensive behaviors and imposing heavy training overhead.To bridge this gap, we present an comprehensive analysis of where, how and which harmful multimodal tokens bypass safeguards in MLLMs. Surprisingly, we find that less than 1% tokens in early-middle layers are responsible for inducing unsafe behaviors, highlighting the potential of precisely removing a small subset of harmful tokens, without requiring safety tuning, can still effectively improve safety against jailbreaks. Motivated by this, we propose Safe Prune-then-Restore (SafePTR), an training-free defense framework that selectively prunes harmful tokens at vulnerable layers while restoring benign features at subsequent layers.Without incurring additional computational overhead, SafePTR significantly enhances the safety of MLLMs while preserving efficiency. Extensive evaluations across three MLLMs and five benchmarks demonstrate SafePTR's state-of-the-art performance in mitigating jailbreak risks without compromising utility.
Via

Jun 26, 2025
Abstract:We describe and analyze a computionally efficient refitting procedure for computing high-probability upper bounds on the instance-wise mean-squared prediction error of penalized nonparametric estimates based on least-squares minimization. Requiring only a single dataset and black box access to the prediction method, it consists of three steps: computing suitable residuals, symmetrizing and scaling them with a pre-factor $\rho$, and using them to define and solve a modified prediction problem recentered at the current estimate. We refer to it as wild refitting, since it uses Rademacher residual symmetrization as in a wild bootstrap variant. Under relatively mild conditions allowing for noise heterogeneity, we establish a high probability guarantee on its performance, showing that the wild refit with a suitably chosen wild noise scale $\rho$ gives an upper bound on prediction error. This theoretical analysis provides guidance into the design of such procedures, including how the residuals should be formed, the amount of noise rescaling in the wild sub-problem needed for upper bounds, and the local stability properties of the block-box procedure. We illustrate the applicability of this procedure to various problems, including non-rigid structure-from-motion recovery with structured matrix penalties; plug-and-play image restoration with deep neural network priors; and randomized sketching with kernel methods.
Via

Jun 24, 2025
Abstract:We study NAFNet (Nonlinear Activation Free Network), a simple and efficient deep learning baseline for image restoration. By using CIFAR10 images corrupted with noise and blur, we conduct an ablation study of NAFNet's core components. Our baseline model implements SimpleGate activation, Simplified Channel Activation (SCA), and LayerNormalization. We compare this baseline to different variants that replace or remove components. Quantitative results (PSNR, SSIM) and examples illustrate how each modification affects restoration performance. Our findings support the NAFNet design: the SimpleGate and simplified attention mechanisms yield better results than conventional activations and attention, while LayerNorm proves to be important for stable training. We conclude with recommendations for model design, discuss potential improvements, and future work.
Via

Jun 24, 2025
Abstract:Convolutional denoising autoencoders (DAEs) are powerful tools for image restoration. However, they inherit a key limitation of convolutional neural networks (CNNs): they tend to recover low-frequency features, such as smooth regions, more effectively than high-frequency details. This leads to the loss of fine details, which is particularly problematic in dental radiographs where preserving subtle anatomical structures is crucial. While self-attention mechanisms can help mitigate this issue by emphasizing important features, conventional attention methods often prioritize features corresponding to cleaner regions and may overlook those obscured by noise. To address this limitation, we propose a noise-aware self-attention method, which allows the model to effectively focus on and recover key features even within noisy regions. Building on this approach, we introduce the noise-aware attention-enhanced denoising autoencoder (NAADA) network for enhancing noisy panoramic dental radiographs. Compared with the recent state of the art (and much heavier) methods like Uformer, MResDNN etc., our method improves the reconstruction of fine details, ensuring better image quality and diagnostic accuracy.
* 10 pages, 8 figures
Via

Jun 26, 2025
Abstract:Novel view synthesis is a task of generating scenes from unseen perspectives; however, synthesizing dynamic scenes from blurry monocular videos remains an unresolved challenge that has yet to be effectively addressed. Existing novel view synthesis methods are often constrained by their reliance on high-resolution images or strong assumptions about static geometry and rigid scene priors. Consequently, their approaches lack robustness in real-world environments with dynamic object and camera motion, leading to instability and degraded visual fidelity. To address this, we propose Motion-aware Dynamic View Synthesis from Blurry Monocular Video via Sparse-Controlled Gaussian Splatting (DBMovi-GS), a method designed for dynamic view synthesis from blurry monocular videos. Our model generates dense 3D Gaussians, restoring sharpness from blurry videos and reconstructing detailed 3D geometry of the scene affected by dynamic motion variations. Our model achieves robust performance in novel view synthesis under dynamic blurry scenes and sets a new benchmark in realistic novel view synthesis for blurry monocular video inputs.
* CVPRW 2025, Neural Fields Beyond Conventional Cameras
Via

Jun 24, 2025
Abstract:Long axial field-of-view PET scanners offer increased field-of-view and sensitivity compared to traditional PET scanners. However, a significant cost is associated with the densely packed photodetectors required for the extended-coverage systems, limiting clinical utilisation. To mitigate the cost limitations, alternative sparse system configurations have been proposed, allowing an extended field-of-view PET design with detector costs similar to a standard PET system, albeit at the expense of image quality. In this work, we propose a deep sinogram restoration network to fill in the missing sinogram data. Our method utilises a modified Residual U-Net, trained on clinical PET scans from a GE Signa PET/MR, simulating the removal of 50% of the detectors in a chessboard pattern (retaining only 25% of all lines of response). The model successfully recovers missing counts, with a mean absolute error below two events per pixel, outperforming 2D interpolation in both sinogram and reconstructed image domain. Notably, the predicted sinograms exhibit a smoothing effect, leading to reconstructed images lacking sharpness in finer details. Despite these limitations, the model demonstrates a substantial capacity for compensating for the undersampling caused by the sparse detector configuration. This proof-of-concept study suggests that sparse detector configurations, combined with deep learning techniques, offer a viable alternative to conventional PET scanner designs. This approach supports the development of cost-effective, total body PET scanners, allowing a significant step forward in medical imaging technology.
* 15 pages, 9 figures
Via

Jun 17, 2025
Abstract:Image restoration faces challenges including ineffective feature fusion, computational bottlenecks and inefficient diffusion processes. To address these, we propose DiffRWKVIR, a novel framework unifying Test-Time Training (TTT) with efficient diffusion. Our approach introduces three key innovations: (1) Omni-Scale 2D State Evolution extends RWKV's location-dependent parameterization to hierarchical multi-directional 2D scanning, enabling global contextual awareness with linear complexity O(L); (2) Chunk-Optimized Flash Processing accelerates intra-chunk parallelism by 3.2x via contiguous chunk processing (O(LCd) complexity), reducing sequential dependencies and computational overhead; (3) Prior-Guided Efficient Diffusion extracts a compact Image Prior Representation (IPR) in only 5-20 steps, proving 45% faster training/inference than DiffIR while solving computational inefficiency in denoising. Evaluated across super-resolution and inpainting benchmarks (Set5, Set14, BSD100, Urban100, Places365), DiffRWKVIR outperforms SwinIR, HAT, and MambaIR/v2 in PSNR, SSIM, LPIPS, and efficiency metrics. Our method establishes a new paradigm for adaptive, high-efficiency image restoration with optimized hardware utilization.
* Submitted to The 8th Chinese Conference on Pattern Recognition and
Computer Vision (2025). Contact to nomodeset@qq.com. Source code will open in
4 months
Via
