We propose BioTamperNet, a novel framework for detecting duplicated regions in tampered biomedical images, leveraging affinity-guided attention inspired by State Space Model (SSM) approximations. Existing forensic models, primarily trained on natural images, often underperform on biomedical data where subtle manipulations can compromise experimental validity. To address this, BioTamperNet introduces an affinity-guided self-attention module to capture intra-image similarities and an affinity-guided cross-attention module to model cross-image correspondences. Our design integrates lightweight SSM-inspired linear attention mechanisms to enable efficient, fine-grained localization. Trained end-to-end, BioTamperNet simultaneously identifies tampered regions and their source counterparts. Extensive experiments on the benchmark bio-forensic datasets demonstrate significant improvements over competitive baselines in accurately detecting duplicated regions. Code - https://github.com/SoumyaroopNandi/BioTamperNet
While specialized detectors for AI-Generated Images (AIGI) achieve near-perfect accuracy on curated benchmarks, they suffer from a dramatic performance collapse in realistic, in-the-wild scenarios. In this work, we demonstrate that simplicity prevails over complex architectural designs. A simple linear classifier trained on the frozen features of modern Vision Foundation Models , including Perception Encoder, MetaCLIP 2, and DINOv3, establishes a new state-of-the-art. Through a comprehensive evaluation spanning traditional benchmarks, unseen generators, and challenging in-the-wild distributions, we show that this baseline not only matches specialized detectors on standard benchmarks but also decisively outperforms them on in-the-wild datasets, boosting accuracy by striking margins of over 30\%. We posit that this superior capability is an emergent property driven by the massive scale of pre-training data containing synthetic content. We trace the source of this capability to two distinct manifestations of data exposure: Vision-Language Models internalize an explicit semantic concept of forgery, while Self-Supervised Learning models implicitly acquire discriminative forensic features from the pretraining data. However, we also reveal persistent limitations: these models suffer from performance degradation under recapture and transmission, remain blind to VAE reconstruction and localized editing. We conclude by advocating for a paradigm shift in AI forensics, moving from overfitting on static benchmarks to harnessing the evolving world knowledge of foundation models for real-world reliability.
The reliability of cyber forensic evidence acquisition is strongly influenced by the underlying operating systems, Windows, macOS, and Linux - due to inherent variations in file system structures, encryption protocols, and forensic tool compatibility. Disk forensics, one of the most widely used techniques in digital investigations, faces distinct obstacles on each platform. Windows, with its predominantly NTFS and FAT file systems, typically supports reliable disk imaging and analysis through established tools such as FTK Imager and Autopsy/Sleuth Kit. However, encryption features frequently pose challenges to evidence acquisition. Conversely, Linux environments, which rely on file systems like ext4 and XFS, generally offer greater transparency, yet the transient nature of log retention often complicates forensic analysis. In instances where anti-forensic strategies such as encryption and compression render traditional disk forensics insufficient, memory forensics becomes crucial. While memory forensic methodologies demonstrate robustness across Windows and Linux platforms forms through frameworks like Volatility, platform-specific difficulties persist. Memory analysis on Linux systems benefits from tools like LiME, snapshot utilities, and dd for memory acquisition; nevertheless, live memory acquisition on Linux can still present challenges. This research systematically assesses both disk and memory forensic acquisition techniques across samples representing Windows and Linux systems. By identifying effective combinations of forensic tools and configurations tailored to each operating system, the study aims to improve the accuracy and reliability of evidence collection. It further evaluates current forensic tools and highlights a persistent gap: consistently assuring forensic input reliability and footprint integrity.
Identifying when and where a news image was taken is crucial for journalists and forensic experts to produce credible stories and debunk misinformation. While many existing methods rely on reverse image search (RIS) engines, these tools often fail to return results, thereby limiting their practical applicability. In this work, we address the challenging scenario where RIS evidence is unavailable. We introduce NewsRECON, a method that links images to relevant news articles to infer their date and location from article metadata. NewsRECON leverages a corpus of over 90,000 articles and integrates: (1) a bi-encoder for retrieving event-relevant articles; (2) two cross-encoders for reranking articles by location and event consistency. Experiments on the TARA and 5Pils-OOC show that NewsRECON outperforms prior work and can be combined with a multimodal large language model to achieve new SOTA results in the absence of RIS evidence. We make our code available.
This work presents an end-to-end pipeline for generating, refining, and evaluating adversarial patches to compromise facial biometric systems, with applications in forensic analysis and security testing. We utilize FGSM to generate adversarial noise targeting an identity classifier and employ a diffusion model with reverse diffusion to enhance imperceptibility through Gaussian smoothing and adaptive brightness correction, thereby facilitating synthetic adversarial patch evasion. The refined patch is applied to facial images to test its ability to evade recognition systems while maintaining natural visual characteristics. A Vision Transformer (ViT)-GPT2 model generates captions to provide a semantic description of a person's identity for adversarial images, supporting forensic interpretation and documentation for identity evasion and recognition attacks. The pipeline evaluates changes in identity classification, captioning results, and vulnerabilities in facial identity verification and expression recognition under adversarial conditions. We further demonstrate effective detection and analysis of adversarial patches and adversarial samples using perceptual hashing and segmentation, achieving an SSIM of 0.95.
The increasing prevalence of malicious Portable Document Format (PDF) files necessitates robust and comprehensive feature extraction techniques for effective detection and analysis. This work presents a unified framework that integrates graph-based, structural, and metadata-driven analysis to generate a rich feature representation for each PDF document. The system extracts text from PDF pages and constructs undirected graphs based on pairwise word relationships, enabling the computation of graph-theoretic features such as node count, edge density, and clustering coefficient. Simultaneously, the framework parses embedded metadata to quantify character distributions, entropy patterns, and inconsistencies across fields such as author, title, and producer. Temporal features are derived from creation and modification timestamps to capture behavioral signatures, while structural elements including, object streams, fonts, and embedded images, are quantified to reflect document complexity. Boolean flags for potentially malicious PDF constructs (e.g., JavaScript, launch actions) are also extracted. Together, these features form a high-dimensional vector representation (170 dimensions) that is well-suited for downstream tasks such as malware classification, anomaly detection, and forensic analysis. The proposed approach is scalable, extensible, and designed to support real-world PDF threat intelligence workflows.6
The proliferation of AI-generated imagery and sophisticated editing tools has rendered traditional forensic methods ineffective for cross-domain forgery detection. We present ForensicFormer, a hierarchical multi-scale framework that unifies low-level artifact detection, mid-level boundary analysis, and high-level semantic reasoning via cross-attention transformers. Unlike prior single-paradigm approaches, which achieve <75% accuracy on out-of-distribution datasets, our method maintains 86.8% average accuracy across seven diverse test sets, spanning traditional manipulations, GAN-generated images, and diffusion model outputs - a significant improvement over state-of-the-art universal detectors. We demonstrate superior robustness to JPEG compression (83% accuracy at Q=70 vs. 66% for baselines) and provide pixel-level forgery localization with a 0.76 F1-score. Extensive ablation studies validate that each hierarchical component contributes 4-10% accuracy improvement, and qualitative analysis reveals interpretable forensic features aligned with human expert reasoning. Our work bridges classical image forensics and modern deep learning, offering a practical solution for real-world deployment where manipulation techniques are unknown a priori.
Scientific image manipulation in biomedical publications poses a growing threat to research integrity and reproducibility. Unlike natural image forensics, biomedical forgery detection is uniquely challenging due to domain-specific artifacts, complex textures, and unstructured figure layouts. We present the first vision-language guided framework for both generating and detecting biomedical image forgeries. By combining diffusion-based synthesis with vision-language prompting, our method enables realistic and semantically controlled manipulations, including duplication, splicing, and region removal, across diverse biomedical modalities. We introduce Rescind, a large-scale benchmark featuring fine-grained annotations and modality-specific splits, and propose Integscan, a structured state space modeling framework that integrates attention-enhanced visual encoding with prompt-conditioned semantic alignment for precise forgery localization. To ensure semantic fidelity, we incorporate a vision-language model based verification loop that filters generated forgeries based on consistency with intended prompts. Extensive experiments on Rescind and existing benchmarks demonstrate that Integscan achieves state of the art performance in both detection and localization, establishing a strong foundation for automated scientific integrity analysis.
Protecting the copyright of user-generated AI images is an emerging challenge as AIGC becomes pervasive in creative workflows. Existing watermarking methods (1) remain vulnerable to real-world adversarial threats, often forced to trade off between defenses against spoofing and removal attacks; and (2) cannot support semantic-level tamper localization. We introduce PAI, a training-free inherent watermarking framework for AIGC copyright protection, plug-and-play with diffusion-based AIGC services. PAI simultaneously provides three key functionalities: robust ownership verification, attack detection, and semantic-level tampering localization. Unlike existing inherent watermark methods that only embed watermarks at noise initialization of diffusion models, we design a novel key-conditioned deflection mechanism that subtly steers the denoising trajectory according to the user key. Such trajectory-level coupling further strengthens the semantic entanglement of identity and content, thereby further enhancing robustness against real-world threats. Moreover, we also provide a theoretical analysis proving that only the valid key can pass verification. Experiments across 12 attack methods show that PAI achieves 98.43\% verification accuracy, improving over SOTA methods by 37.25\% on average, and retains strong tampering localization performance even against advanced AIGC edits. Our code is available at https://github.com/QingyuLiu/PAI.
Person identification in forensic investigations becomes very challenging when common identification means for DNA (i.e., hair strands, soft tissue) are not available. Current methods utilize deep learning methods for face recognition. However, these methods lack effective mechanisms to model cross-domain structural correspondence between two different forensic modalities. In this paper, we introduce a SPOT-Face, a superpixel graph-based framework designed for cross-domain forensic face identification of victims using their skeleton and sketch images. Our unified framework involves constructing a superpixel-based graph from an image and then using different graph neural networks(GNNs) backbones to extract the embeddings of these graphs, while cross-domain correspondence is established through attention-guided optimal transport mechanism. We have evaluated our proposed framework on two publicly available dataset: IIT\_Mandi\_S2F (S2F) and CUFS. Extensive experiments were conducted to evaluate our proposed framework. The experimental results show significant improvement in identification metrics ( i.e., Recall, mAP) over existing graph-based baselines. Furthermore, our framework demonstrates to be highly effective for matching skulls and sketches to faces in forensic investigations.