Advanced Persistent Threats (APTs) are sophisticated, long-term cyberattacks that are difficult to detect because they operate stealthily and often blend into normal system behavior. This paper presents a neuro-symbolic anomaly detection framework that combines a Graph Autoencoder (GAE) with rare pattern mining to identify APT-like activities in system-level provenance data. Our approach first constructs a process behavioral graph using k-Nearest Neighbors based on feature similarity, then learns normal relational structure using a Graph Autoencoder. Anomaly candidates are identified through deviations between observed and reconstructed graph structure. To further improve detection, we integrate an rare pattern mining module that discovers infrequent behavioral co-occurrences and uses them to boost anomaly scores for processes exhibiting rare signatures. We evaluate the proposed method on the DARPA Transparent Computing datasets and show that rare-pattern boosting yields substantial gains in anomaly ranking quality over the baseline GAE. Compared with existing unsupervised approaches on the same benchmark, our single unified model consistently outperforms individual context-based detectors and achieves performance competitive with ensemble aggregation methods that require multiple separate detectors. These results highlight the value of coupling graph-based representation learning with classical pattern mining to improve both effectiveness and interpretability in provenance-based security anomaly detection.
Open-domain multimodal document retrieval aims to retrieve specific components (paragraphs, tables, or images) from large and interconnected document corpora. Existing graph-based retrieval approaches typically rely on a uniform similarity metric that overlooks hop-specific semantics, and their rigid pre-defined plans hinder dynamic error correction. These limitations suggest that a retriever should adapt its reasoning to the evolving context and recover intelligently from dead ends. To address these needs, we propose Failure is Feedback (FiF), which casts subgraph retrieval as a sequential decision process and introduces two key innovations. (i) We introduce a history-aware backtracking mechanism; unlike standard backtracking that simply reverts the state, our approach piggybacks on the context of failed traversals, leveraging insights from previous failures. (ii) We implement an economically-rational agentic workflow. Unlike conventional agents with static strategies, our orchestrator employs a cost-aware traversal method to dynamically manage the trade-off between retrieval accuracy and inference costs, escalating to intensive LLM-based reasoning only when the prior failure justifies the additional computational investment. Extensive experiments show that FiF achieves state-of-the-art retrieval on the benchmarks of MultimodalQA, MMCoQA and WebQA.
Agent memory systems must accommodate continuously growing information while supporting efficient, context-aware retrieval for downstream tasks. Abstraction is essential for scaling agent memory, yet it often comes at the cost of specificity, obscuring the fine-grained details required for effective reasoning. We introduce Memora, a harmonic memory representation that structurally balances abstraction and specificity. Memora organizes information via its primary abstractions that index concrete memory values and consolidate related updates into unified memory entries, while cue anchors expand retrieval access across diverse aspects of the memory and connect related memories. Building on this structure, we employ a retrieval policy that actively exploits these memory connections to retrieve relevant information beyond direct semantic similarity. Theoretically, we show that standard Retrieval-Augmented Generation (RAG) and Knowledge Graph (KG)-based memory systems emerge as special cases of our framework. Empirically, Memora establishes a new state-of-the-art on the LoCoMo and LongMemEval benchmarks, demonstrating better retrieval relevance and reasoning effectiveness as memory scales.
This paper proposes a graph-augmented reasoning framework for tobacco pest and disease management that integrates structured domain knowledge into large language models. Building on GraphRAG, we construct a domain-specific knowledge graph and retrieve query-relevant subgraphs to provide relational evidence during answer generation. The framework adopts ChatGLM as the Transformer backbone with LoRA-based parameter-efficient fine-tuning, and employs a graph neural network to learn node representations that capture symptom-disease-treatment dependencies. By explicitly modeling diseases, symptoms, pesticides, and control measures as linked entities, the system supports evidence-aware retrieval beyond surface-level text similarity. Retrieved graph evidence is incorporated into the LLM input to guide generation toward domain-consistent recommendations and to mitigate hallucinated or inappropriate treatments. Experimental results show consistent improvements over text-only baselines, with the largest gains observed on multi-hop and comparative reasoning questions that require chaining multiple relations.
Imbalanced node classification in graph neural networks (GNNs) happens when some labels are much more common than others, which causes the model to learn unfairly and perform badly on the less common classes. To solve this problem, we propose a Curriculum-Guided Feature Learning and Three-Stage Attention Network (CL3AN-GNN), a learning network that uses a three-step attention system (Engage, Enact, Embed) similar to how humans learn. The model begins by engaging with structurally simpler features, defined as (1) local neighbourhood patterns (1-hop), (2) low-degree node attributes, and (3) class-separable node pairs identified via initial graph convolutional networks and graph attention networks (GCN and GAT) embeddings. This foundation enables stable early learning despite label skew. The Enact stage then addresses complicated aspects: (1) connections that require multiple steps, (2) edges that connect different types of nodes, and (3) nodes at the edges of minority classes by using adjustable attention weights. Finally, Embed consolidates these features via iterative message passing and curriculum-aligned loss weighting. We evaluate CL3AN-GNN on eight Open Graph Benchmark datasets spanning social, biological, and citation networks. Experiments show consistent improvements across all datasets in accuracy, F1-score, and AUC over recent state-of-the-art methods. The model's step-by-step method works well with different types of graph datasets, showing quicker results than training everything at once, better performance on new, imbalanced graphs, and clear explanations of each step using gradient stability and attention correlation learning curves. This work provides both a theoretically grounded framework for curriculum learning in GNNs and practical evidence of its effectiveness against imbalances, validated through metrics, convergence speeds, and generalisation tests.
High-resolution spatial transcriptomics platforms, such as Xenium, generate single-cell images that capture both molecular and spatial context, but their extremely high dimensionality poses major challenges for representation learning and clustering. In this study, we analyze data from the Xenium platform, which captures high-resolution images of tumor microarray (TMA) tissues and converts them into cell-by-gene matrices suitable for computational analysis. We benchmark and extend nonnegative matrix factorization (NMF) for spatial transcriptomics by introducing two spatially regularized variants. First, we propose Spatial NMF (SNMF), a lightweight baseline that enforces local spatial smoothness by diffusing each cell's NMF factor vector over its spatial neighborhood. Second, we introduce Hybrid Spatial NMF (hSNMF), which performs spatially regularized NMF followed by Leiden clustering on a hybrid adjacency that integrates spatial proximity (via a contact-radius graph) and transcriptomic similarity through a tunable mixing parameter alpha. Evaluated on a cholangiocarcinoma dataset, SNMF and hSNMF achieve markedly improved spatial compactness (CHAOS < 0.004, Moran's I > 0.96), greater cluster separability (Silhouette > 0.12, DBI < 1.8), and higher biological coherence (CMC and enrichment) compared to other spatial baselines. Availability and implementation: https://github.com/ishtyaqmahmud/hSNMF
Predicting drug-drug interactions (DDIs) is essential for safe pharmacological treatments. Previous graph neural network (GNN) models leverage molecular structures and interaction networks but mostly rely on linear aggregation and symmetric assumptions, limiting their ability to capture nonlinear and heterogeneous patterns. We propose MGKAN, a Graph Kolmogorov-Arnold Network that introduces learnable basis functions into asymmetric DDI prediction. MGKAN replaces conventional MLP transformations with KAN-driven basis functions, enabling more expressive and nonlinear modeling of drug relationships. To capture pharmacological dependencies, MGKAN integrates three network views-an asymmetric DDI network, a co-interaction network, and a biochemical similarity network-with role-specific embeddings to preserve directional semantics. A fusion module combines linear attention and nonlinear transformation to enhance representational capacity. On two benchmark datasets, MGKAN outperforms seven state-of-the-art baselines. Ablation studies and case studies confirm its predictive accuracy and effectiveness in modeling directional drug effects.
Decentralized learning (DL) enables a set of nodes to train a model collaboratively without central coordination, offering benefits for privacy and scalability. However, DL struggles to train a high accuracy model when the data distribution is non-independent and identically distributed (non-IID) and when the communication topology is static. To address these issues, we propose Morph, a topology optimization algorithm for DL. In Morph, nodes adaptively choose peers for model exchange based on maximum model dissimilarity. Morph maintains a fixed in-degree while dynamically reshaping the communication graph through gossip-based peer discovery and diversity-driven neighbor selection, thereby improving robustness to data heterogeneity. Experiments on CIFAR-10 and FEMNIST with up to 100 nodes show that Morph consistently outperforms static and epidemic baselines, while closely tracking the fully connected upper bound. On CIFAR-10, Morph achieves a relative improvement of 1.12x in test accuracy compared to the state-of-the-art baselines. On FEMNIST, Morph achieves an accuracy that is 1.08x higher than Epidemic Learning. Similar trends hold for 50 node deployments, where Morph narrows the gap to the fully connected upper bound within 0.5 percentage points on CIFAR-10. These results demonstrate that Morph achieves higher final accuracy, faster convergence, and more stable learning as quantified by lower inter-node variance, while requiring fewer communication rounds than baselines and no global knowledge.
Recent advances in Retrieval-Augmented Generation (RAG) have shifted from simple vector similarity to structure-aware approaches like HippoRAG, which leverage Knowledge Graphs (KGs) and Personalized PageRank (PPR) to capture multi-hop dependencies. However, these methods suffer from a "Static Graph Fallacy": they rely on fixed transition probabilities determined during indexing. This rigidity ignores the query-dependent nature of edge relevance, causing semantic drift where random walks are diverted into high-degree "hub" nodes before reaching critical downstream evidence. Consequently, models often achieve high partial recall but fail to retrieve the complete evidence chain required for multi-hop queries. To address this, we propose CatRAG, Context-Aware Traversal for robust RAG, a framework that builds on the HippoRAG 2 architecture and transforms the static KG into a query-adaptive navigation structure. We introduce a multi-faceted framework to steer the random walk: (1) Symbolic Anchoring, which injects weak entity constraints to regularize the random walk; (2) Query-Aware Dynamic Edge Weighting, which dynamically modulates graph structure, to prune irrelevant paths while amplifying those aligned with the query's intent; and (3) Key-Fact Passage Weight Enhancement, a cost-efficient bias that structurally anchors the random walk to likely evidence. Experiments across four multi-hop benchmarks demonstrate that CatRAG consistently outperforms state of the art baselines. Our analysis reveals that while standard Recall metrics show modest gains, CatRAG achieves substantial improvements in reasoning completeness, the capacity to recover the entire evidence path without gaps. These results reveal that our approach effectively bridges the gap between retrieving partial context and enabling fully grounded reasoning. Resources are available at https://github.com/kwunhang/CatRAG.
Understanding causality between real-world events from social media is essential for situational awareness, yet existing causal discovery methods often overlook the interplay between semantic, spatial, and temporal contexts. We propose CaST: Causal Discovery via Spatio-Temporal Graphs, a unified framework for causal discovery in disaster domain that integrates semantic similarity and spatio-temporal proximity using Large Language Models (LLMs) pretrained on disaster datasets. CaST constructs an event graph for each window of tweets. Each event extracted from tweets is represented as a node embedding enriched with its contextual semantics, geographic coordinates, and temporal features. These event nodes are then connected to form a spatio-temporal event graph, which is processed using a multi-head Graph Attention Network (GAT) \cite{gat} to learn directed causal relationships. We construct an in-house dataset of approximately 167K disaster-related tweets collected during Hurricane Harvey and annotated following the MAVEN-ERE schema. Experimental results show that CaST achieves superior performance over both traditional and state-of-the-art methods. Ablation studies further confirm that incorporating spatial and temporal signals substantially improves both recall and stability during training. Overall, CaST demonstrates that integrating spatio-temporal reasoning into event graphs enables more robust and interpretable causal discovery in disaster-related social media text.