accuracy.To address these problems, we propose SCFusion, a framework that combines three techniques to improve multi-view feature integration. First, it applies a sparse transformation to avoid unnatural interpolation during projection. Next, it performs density-aware weighting to adaptively fuse features based on spatial confidence and camera distance. Finally, it introduces a multi-view consistency loss that encourages each camera to learn discriminative features independently before fusion.Experiments show that SCFusion achieves state-of-the-art performance, reaching an IDF1 score of 95.9% on WildTrack and a MODP of 89.2% on MultiviewX, outperforming the baseline method TrackTacular. These results demonstrate that SCFusion effectively mitigates the limitations of conventional BEV projection and provides a robust and accurate solution for multi-view object detection and tracking.
https://github.com/RedForestAi/WebEyeTrack.