Extreme Multi Label Classification


Extreme multi-label classification is the task of assigning multiple labels to a single instance from an extremely large label space.

PiPViT: Patch-based Visual Interpretable Prototypes for Retinal Image Analysis

Add code
Jun 12, 2025
Viaarxiv icon

Transformers Meet Hyperspectral Imaging: A Comprehensive Study of Models, Challenges and Open Problems

Add code
Jun 10, 2025
Viaarxiv icon

Efficient Text Encoders for Labor Market Analysis

Add code
May 30, 2025
Viaarxiv icon

Automatic Construction of Multiple Classification Dimensions for Managing Approaches in Scientific Papers

Add code
May 29, 2025
Viaarxiv icon

Frequency-Adaptive Discrete Cosine-ViT-ResNet Architecture for Sparse-Data Vision

Add code
May 28, 2025
Viaarxiv icon

MT-CYP-Net: Multi-Task Network for Pixel-Level Crop Yield Prediction Under Very Few Samples

Add code
May 17, 2025
Viaarxiv icon

Hierarchical Multi-Label Generation with Probabilistic Level-Constraint

Add code
Apr 30, 2025
Viaarxiv icon

ScarceGAN: Discriminative Classification Framework for Rare Class Identification for Longitudinal Data with Weak Prior

Add code
May 02, 2025
Viaarxiv icon

Multi-Head Encoding for Extreme Label Classification

Add code
Dec 13, 2024
Figure 1 for Multi-Head Encoding for Extreme Label Classification
Figure 2 for Multi-Head Encoding for Extreme Label Classification
Figure 3 for Multi-Head Encoding for Extreme Label Classification
Figure 4 for Multi-Head Encoding for Extreme Label Classification
Viaarxiv icon

Prototypical Extreme Multi-label Classification with a Dynamic Margin Loss

Add code
Oct 27, 2024
Viaarxiv icon