Abstract:Accurate and fine-grained crop yield prediction plays a crucial role in advancing global agriculture. However, the accuracy of pixel-level yield estimation based on satellite remote sensing data has been constrained by the scarcity of ground truth data. To address this challenge, we propose a novel approach called the Multi-Task Crop Yield Prediction Network (MT-CYP-Net). This framework introduces an effective multi-task feature-sharing strategy, where features extracted from a shared backbone network are simultaneously utilized by both crop yield prediction decoders and crop classification decoders with the ability to fuse information between them. This design allows MT-CYP-Net to be trained with extremely sparse crop yield point labels and crop type labels, while still generating detailed pixel-level crop yield maps. Concretely, we collected 1,859 yield point labels along with corresponding crop type labels and satellite images from eight farms in Heilongjiang Province, China, in 2023, covering soybean, maize, and rice crops, and constructed a sparse crop yield label dataset. MT-CYP-Net is compared with three classical machine learning and deep learning benchmark methods in this dataset. Experimental results not only indicate the superiority of MT-CYP-Net compared to previous methods on multiple types of crops but also demonstrate the potential of deep networks on precise pixel-level crop yield prediction, especially with limited data labels.
Abstract:This study analyzed the performance of different machine learning methods for winter wheat yield prediction using extensive datasets of weather, soil, and crop phenology. To address the seasonality, weekly features were used that explicitly take soil moisture conditions and meteorological events into account. Our results indicated that nonlinear models such as deep neural networks (DNN) and XGboost are more effective in finding the functional relationship between the crop yield and input data compared to linear models. The results also revealed that the deep neural networks often had a higher prediction accuracy than XGboost. One of the main limitations of machine learning models is their black box property. As a result, we moved beyond prediction and performed feature selection, as it provides key results towards explaining yield prediction (variable importance by time). The feature selection method estimated the individual effect of weather components, soil conditions, and phenology variables as well as the time that these variables become important. As such, our study indicates which variables have the most significant effect on winter wheat yield.