Topic:Entity Disambiguation
What is Entity Disambiguation? Entity disambiguation is the process of resolving ambiguous references to entities in text data.
Papers and Code
May 06, 2025
Abstract:Entity Linking (EL) plays a crucial role in Natural Language Processing (NLP) applications, enabling the disambiguation of entity mentions by linking them to their corresponding entries in a reference knowledge base (KB). Thanks to their deep contextual understanding capabilities, LLMs offer a new perspective to tackle EL, promising better results than traditional methods. Despite the impressive generalization capabilities of LLMs, linking less popular, long-tail entities remains challenging as these entities are often underrepresented in training data and knowledge bases. Furthermore, the long-tail EL task is an understudied problem, and limited studies address it with LLMs. In the present work, we assess the performance of two popular LLMs, GPT and LLama3, in a long-tail entity linking scenario. Using MHERCL v0.1, a manually annotated benchmark of sentences from domain-specific historical texts, we quantitatively compare the performance of LLMs in identifying and linking entities to their corresponding Wikidata entries against that of ReLiK, a state-of-the-art Entity Linking and Relation Extraction framework. Our preliminary experiments reveal that LLMs perform encouragingly well in long-tail EL, indicating that this technology can be a valuable adjunct in filling the gap between head and long-tail EL.
Via

May 05, 2025
Abstract:Recent advances in Large Language Models (LLMs) have positioned them as a prominent solution for Natural Language Processing tasks. Notably, they can approach these problems in a zero or few-shot manner, thereby eliminating the need for training or fine-tuning task-specific models. However, LLMs face some challenges, including hallucination and the presence of outdated knowledge or missing information from specific domains in the training data. These problems cannot be easily solved by retraining the models with new data as it is a time-consuming and expensive process. To mitigate these issues, Knowledge Graphs (KGs) have been proposed as a structured external source of information to enrich LLMs. With this idea, in this work we use KGs to enhance LLMs for zero-shot Entity Disambiguation (ED). For that purpose, we leverage the hierarchical representation of the entities' classes in a KG to gradually prune the candidate space as well as the entities' descriptions to enrich the input prompt with additional factual knowledge. Our evaluation on popular ED datasets shows that the proposed method outperforms non-enhanced and description-only enhanced LLMs, and has a higher degree of adaptability than task-specific models. Furthermore, we conduct an error analysis and discuss the impact of the leveraged KG's semantic expressivity on the ED performance.
* Proc. 23rd Int. Semantic Web Conf. (ISWC 2024), LNCS, Springer,
2024
* Pre-print submitted to ISWC 2024
Via

Apr 14, 2025
Abstract:With the rise of knowledge graph based retrieval-augmented generation (RAG) techniques such as GraphRAG and Pike-RAG, the role of knowledge graphs in enhancing the reasoning capabilities of large language models (LLMs) has become increasingly prominent. However, traditional Knowledge Graph Construction (KGC) methods face challenges like complex entity disambiguation, rigid schema definition, and insufficient cross-document knowledge integration. This paper focuses on the task of automatic document-level knowledge graph construction. It proposes the Document-level Retrieval Augmented Knowledge Graph Construction (RAKG) framework. RAKG extracts pre-entities from text chunks and utilizes these pre-entities as queries for RAG, effectively addressing the issue of long-context forgetting in LLMs and reducing the complexity of Coreference Resolution. In contrast to conventional KGC methods, RAKG more effectively captures global information and the interconnections among disparate nodes, thereby enhancing the overall performance of the model. Additionally, we transfer the RAG evaluation framework to the KGC field and filter and evaluate the generated knowledge graphs, thereby avoiding incorrectly generated entities and relationships caused by hallucinations in LLMs. We further developed the MINE dataset by constructing standard knowledge graphs for each article and experimentally validated the performance of RAKG. The results show that RAKG achieves an accuracy of 95.91 % on the MINE dataset, a 6.2 % point improvement over the current best baseline, GraphRAG (89.71 %). The code is available at https://github.com/LMMApplication/RAKG.
* 9 pages, 6 figures
Via

Apr 13, 2025
Abstract:This study addresses the challenge of ambiguity in knowledge graph question answering (KGQA). While recent KGQA systems have made significant progress, particularly with the integration of large language models (LLMs), they typically assume user queries are unambiguous, which is an assumption that rarely holds in real-world applications. To address these limitations, we propose a novel framework that dynamically handles both entity ambiguity (e.g., distinguishing between entities with similar names) and intent ambiguity (e.g., clarifying different interpretations of user queries) through interactive clarification. Our approach employs a Bayesian inference mechanism to quantify query ambiguity and guide LLMs in determining when and how to request clarification from users within a multi-turn dialogue framework. We further develop a two-agent interaction framework where an LLM-based user simulator enables iterative refinement of logical forms through simulated user feedback. Experimental results on the WebQSP and CWQ dataset demonstrate that our method significantly improves performance by effectively resolving semantic ambiguities. Additionally, we contribute a refined dataset of disambiguated queries, derived from interaction histories, to facilitate future research in this direction.
* This work has been accepted by the IJCNN 2025 main track
Via

Mar 26, 2025
Abstract:We present the Named Entity Recognition system developed by the Edit Dunhuang team for the EvaHan2025 competition. Our approach integrates three core components: (1) Pindola, a modern transformer-based bidirectional encoder pretrained on a large corpus of Classical Chinese texts; (2) a retrieval module that fetches relevant external context for each target sequence; and (3) a generative reasoning step that summarizes retrieved context in Classical Chinese for more robust entity disambiguation. Using this approach, we achieve an average F1 score of 85.58, improving upon the competition baseline by nearly 5 points.
* Second Workshop on Ancient Language Processing, Mar 2025,
Albuquerque, United States
Via

Mar 26, 2025
Abstract:Clinical coding is a critical task in healthcare, although traditional methods for automating clinical coding may not provide sufficient explicit evidence for coders in production environments. This evidence is crucial, as medical coders have to make sure there exists at least one explicit passage in the input health record that justifies the attribution of a code. We therefore propose to reframe the task as an entity linking problem, in which each document is annotated with its set of codes and respective textual evidence, enabling better human-machine collaboration. By leveraging parameter-efficient fine-tuning of Large Language Models (LLMs), together with constrained decoding, we introduce three approaches to solve this problem that prove effective at disambiguating clinical mentions and that perform well in few-shot scenarios.
* Accepted at CL4Health at NAACL 2025
Via

Feb 03, 2025
Abstract:In this work, we address the brand entity linking problem for e-commerce search queries. The entity linking task is done by either i)a two-stage process consisting of entity mention detection followed by entity disambiguation or ii) an end-to-end linking approaches that directly fetch the target entity given the input text. The task presents unique challenges: queries are extremely short (averaging 2.4 words), lack natural language structure, and must handle a massive space of unique brands. We present a two-stage approach combining named-entity recognition with matching, and a novel end-to-end solution using extreme multi-class classification. We validate our solutions by both offline benchmarks and the impact of online A/B test.
Via

Feb 04, 2025
Abstract:We introduce FewTopNER, a novel framework that integrates few-shot named entity recognition (NER) with topic-aware contextual modeling to address the challenges of cross-lingual and low-resource scenarios. FewTopNER leverages a shared multilingual encoder based on XLM-RoBERTa, augmented with language-specific calibration mechanisms, to generate robust contextual embeddings. The architecture comprises a prototype-based entity recognition branch, employing BiLSTM and Conditional Random Fields for sequence labeling, and a topic modeling branch that extracts document-level semantic features through hybrid probabilistic and neural methods. A cross-task bridge facilitates dynamic bidirectional attention and feature fusion between entity and topic representations, thereby enhancing entity disambiguation by incorporating global semantic context. Empirical evaluations on multilingual benchmarks across English, French, Spanish, German, and Italian demonstrate that FewTopNER significantly outperforms existing state-of-the-art few-shot NER models. In particular, the framework achieves improvements of 2.5-4.0 percentage points in F1 score and exhibits enhanced topic coherence, as measured by normalized pointwise mutual information. Ablation studies further confirm the critical contributions of the shared encoder and cross-task integration mechanisms to the overall performance. These results underscore the efficacy of incorporating topic-aware context into few-shot NER and highlight the potential of FewTopNER for robust cross-lingual applications in low-resource settings.
Via

Dec 13, 2024
Abstract:In the ever-evolving landscape of natural language processing and information retrieval, the need for robust and domain-specific entity linking algorithms has become increasingly apparent. It is crucial in a considerable number of fields such as humanities, technical writing and biomedical sciences to enrich texts with semantics and discover more knowledge. The use of Named Entity Disambiguation (NED) in such domains requires handling noisy texts, low resource settings and domain-specific KBs. Existing approaches are mostly inappropriate for such scenarios, as they either depend on training data or are not flexible enough to work with domain-specific KBs. Thus in this work, we present an unsupervised approach leveraging the concept of Group Steiner Trees (GST), which can identify the most relevant candidates for entity disambiguation using the contextual similarities across candidate entities for all the mentions present in a document. We outperform the state-of-the-art unsupervised methods by more than 40\% (in avg.) in terms of Precision@1 across various domain-specific datasets.
* Accepted in EMNLP-2024
Via

Dec 20, 2024
Abstract:Questions within surveys, called survey items, are used in the social sciences to study latent concepts, such as the factors influencing life satisfaction. Instead of using explicit citations, researchers paraphrase the content of the survey items they use in-text. However, this makes it challenging to find survey items of interest when comparing related work. Automatically parsing and linking these implicit mentions to survey items in a knowledge base can provide more fine-grained references. We model this task, called Survey Item Linking (SIL), in two stages: mention detection and entity disambiguation. Due to an imprecise definition of the task, existing datasets used for evaluating the performance for SIL are too small and of low-quality. We argue that latent concepts and survey item mentions should be differentiated. To this end, we create a high-quality and richly annotated dataset consisting of 20,454 English and German sentences. By benchmarking deep learning systems for each of the two stages independently and sequentially, we demonstrate that the task is feasible, but observe that errors propagate from the first stage, leading to a lower overall task performance. Moreover, mentions that require the context of multiple sentences are more challenging to identify for models in the first stage. Modeling the entire context of a document and combining the two stages into an end-to-end system could mitigate these problems in future work, and errors could additionally be reduced by collecting more diverse data and by improving the quality of the knowledge base. The data and code are available at https://github.com/e-tornike/SIL .
Via
