What is Deepfake Detection? DeepFake detection is the task of detecting fake videos or images that have been generated using deep learning techniques.
Papers and Code
Sep 04, 2025
Abstract:Different from traditional sentence-level audio deepfake detection (ADD), partial audio deepfake detection (PADD) requires frame-level positioning of the location of fake speech. While some progress has been made in this area, leveraging semantic information from audio, especially named entities, remains an underexplored aspect. To this end, we propose NE-PADD, a novel method for Partial Audio Deepfake Detection (PADD) that leverages named entity knowledge through two parallel branches: Speech Name Entity Recognition (SpeechNER) and PADD. The approach incorporates two attention aggregation mechanisms: Attention Fusion (AF) for combining attention weights and Attention Transfer (AT) for guiding PADD with named entity semantics using an auxiliary loss. Built on the PartialSpoof-NER dataset, experiments show our method outperforms existing baselines, proving the effectiveness of integrating named entity knowledge in PADD. The code is available at https://github.com/AI-S2-Lab/NE-PADD.
Via

Sep 04, 2025
Abstract:The widespread adoption of synthetic media demands accessible deepfake detectors and realistic benchmarks. While most existing research evaluates deepfake detectors on highly controlled datasets, we focus on the recently released "in-the-wild" benchmark, Deepfake-Eval-2024. Initial reporting on Deepfake-Eval-2024 showed that three finetuned open-source models achieve accuracies between 61% and 69%, significantly lagging behind the leading commercial deepfake detector with 82% accuracy. Our work revisits one of these baseline approaches, originally introduced by Ojha et al., which adapts standard pretrained vision backbones to produce generalizable deepfake detectors. We demonstrate that with better-tuned hyperparameters, this simple approach actually yields much higher performance -- 81% accuracy on Deepfake-Eval-2024 -- surpassing the previously reported accuracy of this baseline approach by 18% and competing with commercial deepfake detectors. We discuss tradeoffs in accuracy, computational costs, and interpretability, focusing on how practical these deepfake detectors might be when deployed in real-world settings. Our code can be found at https://github.com/Deepfake-Detection-KKO/deepfake-detection.
Via

Sep 04, 2025
Abstract:Speech generation systems can produce remarkably realistic vocalisations that are often indistinguishable from human speech, posing significant authenticity challenges. Although numerous deepfake detection methods have been developed, their effectiveness in real-world environments remains unrealiable due to the domain shift between training and test samples arising from diverse human speech and fast evolving speech synthesis systems. This is not adequately addressed by current datasets, which lack real-world application challenges with diverse and up-to-date audios in both real and deep-fake categories. To fill this gap, we introduce AUDETER (AUdio DEepfake TEst Range), a large-scale, highly diverse deepfake audio dataset for comprehensive evaluation and robust development of generalised models for deepfake audio detection. It consists of over 4,500 hours of synthetic audio generated by 11 recent TTS models and 10 vocoders with a broad range of TTS/vocoder patterns, totalling 3 million audio clips, making it the largest deepfake audio dataset by scale. Through extensive experiments with AUDETER, we reveal that i) state-of-the-art (SOTA) methods trained on existing datasets struggle to generalise to novel deepfake audio samples and suffer from high false positive rates on unseen human voice, underscoring the need for a comprehensive dataset; and ii) these methods trained on AUDETER achieve highly generalised detection performance and significantly reduce detection error rate by 44.1% to 51.6%, achieving an error rate of only 4.17% on diverse cross-domain samples in the popular In-the-Wild dataset, paving the way for training generalist deepfake audio detectors. AUDETER is available on GitHub.
Via

Sep 03, 2025
Abstract:Recent advancements in generative AI, particularly in speech synthesis, have enabled the generation of highly natural-sounding synthetic speech that closely mimics human voices. While these innovations hold promise for applications like assistive technologies, they also pose significant risks, including misuse for fraudulent activities, identity theft, and security threats. Current research on spoofing detection countermeasures remains limited by generalization to unseen deepfake attacks and languages. To address this, we propose a gating mechanism extracting relevant feature from the speech foundation XLS-R model as a front-end feature extractor. For downstream back-end classifier, we employ Multi-kernel gated Convolution (MultiConv) to capture both local and global speech artifacts. Additionally, we introduce Centered Kernel Alignment (CKA) as a similarity metric to enforce diversity in learned features across different MultiConv layers. By integrating CKA with our gating mechanism, we hypothesize that each component helps improving the learning of distinct synthetic speech patterns. Experimental results demonstrate that our approach achieves state-of-the-art performance on in-domain benchmarks while generalizing robustly to out-of-domain datasets, including multilingual speech samples. This underscores its potential as a versatile solution for detecting evolving speech deepfake threats.
* This paper has been accepted by ACM MM 2025
Via

Aug 28, 2025
Abstract:The SAFE Challenge evaluates synthetic speech detection across three tasks: unmodified audio, processed audio with compression artifacts, and laundered audio designed to evade detection. We systematically explore self-supervised learning (SSL) front-ends, training data compositions, and audio length configurations for robust deepfake detection. Our AASIST-based approach incorporates WavLM large frontend with RawBoost augmentation, trained on a multilingual dataset of 256,600 samples spanning 9 languages and over 70 TTS systems from CodecFake, MLAAD v5, SpoofCeleb, Famous Figures, and MAILABS. Through extensive experimentation with different SSL front-ends, three training data versions, and two audio lengths, we achieved second place in both Task 1 (unmodified audio detection) and Task 3 (laundered audio detection), demonstrating strong generalization and robustness.
Via

Aug 28, 2025
Abstract:Deepfake detection remains a formidable challenge due to the complex and evolving nature of fake content in real-world scenarios. However, existing academic benchmarks suffer from severe discrepancies from industrial practice, typically featuring homogeneous training sources and low-quality testing images, which hinder the practical deployments of current detectors. To mitigate this gap, we introduce HydraFake, a dataset that simulates real-world challenges with hierarchical generalization testing. Specifically, HydraFake involves diversified deepfake techniques and in-the-wild forgeries, along with rigorous training and evaluation protocol, covering unseen model architectures, emerging forgery techniques and novel data domains. Building on this resource, we propose Veritas, a multi-modal large language model (MLLM) based deepfake detector. Different from vanilla chain-of-thought (CoT), we introduce pattern-aware reasoning that involves critical reasoning patterns such as "planning" and "self-reflection" to emulate human forensic process. We further propose a two-stage training pipeline to seamlessly internalize such deepfake reasoning capacities into current MLLMs. Experiments on HydraFake dataset reveal that although previous detectors show great generalization on cross-model scenarios, they fall short on unseen forgeries and data domains. Our Veritas achieves significant gains across different OOD scenarios, and is capable of delivering transparent and faithful detection outputs.
Via

Aug 28, 2025
Abstract:We introduce FakeParts, a new class of deepfakes characterized by subtle, localized manipulations to specific spatial regions or temporal segments of otherwise authentic videos. Unlike fully synthetic content, these partial manipulations, ranging from altered facial expressions to object substitutions and background modifications, blend seamlessly with real elements, making them particularly deceptive and difficult to detect. To address the critical gap in detection capabilities, we present FakePartsBench, the first large-scale benchmark dataset specifically designed to capture the full spectrum of partial deepfakes. Comprising over 25K videos with pixel-level and frame-level manipulation annotations, our dataset enables comprehensive evaluation of detection methods. Our user studies demonstrate that FakeParts reduces human detection accuracy by over 30% compared to traditional deepfakes, with similar performance degradation observed in state-of-the-art detection models. This work identifies an urgent vulnerability in current deepfake detection approaches and provides the necessary resources to develop more robust methods for partial video manipulations.
Via

Aug 27, 2025
Abstract:The increasing realism and accessibility of deepfakes have raised critical concerns about media authenticity and information integrity. Despite recent advances, deepfake detection models often struggle to generalize beyond their training distributions, particularly when applied to media content found in the wild. In this work, we present a robust video deepfake detection framework with strong generalization that takes advantage of the rich facial representations learned by face foundation models. Our method is built on top of FSFM, a self-supervised model trained on real face data, and is further fine-tuned using an ensemble of deepfake datasets spanning both face-swapping and face-reenactment manipulations. To enhance discriminative power, we incorporate triplet loss variants during training, guiding the model to produce more separable embeddings between real and fake samples. Additionally, we explore attribution-based supervision schemes, where deepfakes are categorized by manipulation type or source dataset, to assess their impact on generalization. Extensive experiments across diverse evaluation benchmarks demonstrate the effectiveness of our approach, especially in challenging real-world scenarios.
Via

Aug 27, 2025
Abstract:Fake images in selfie banking are increasingly becoming a threat. Previously, it was just Photoshop, but now deep learning technologies enable us to create highly realistic fake identities, which fraudsters exploit to bypass biometric systems such as facial recognition in online banking. This paper explores the use of an already established forensic recognition system, previously used for picture camera localization, in deepfake detection.
Via

Aug 24, 2025
Abstract:Deepfake detection is a critical task in identifying manipulated multimedia content. In real-world scenarios, deepfake content can manifest across multiple modalities, including audio and video. To address this challenge, we present ERF-BA-TFD+, a novel multimodal deepfake detection model that combines enhanced receptive field (ERF) and audio-visual fusion. Our model processes both audio and video features simultaneously, leveraging their complementary information to improve detection accuracy and robustness. The key innovation of ERF-BA-TFD+ lies in its ability to model long-range dependencies within the audio-visual input, allowing it to better capture subtle discrepancies between real and fake content. In our experiments, we evaluate ERF-BA-TFD+ on the DDL-AV dataset, which consists of both segmented and full-length video clips. Unlike previous benchmarks, which focused primarily on isolated segments, the DDL-AV dataset allows us to assess the model's performance in a more comprehensive and realistic setting. Our method achieves state-of-the-art results on this dataset, outperforming existing techniques in terms of both accuracy and processing speed. The ERF-BA-TFD+ model demonstrated its effectiveness in the "Workshop on Deepfake Detection, Localization, and Interpretability," Track 2: Audio-Visual Detection and Localization (DDL-AV), and won first place in this competition.
Via
