What is Deepfake Detection? DeepFake detection is the task of detecting fake videos or images that have been generated using deep learning techniques.
Papers and Code
Jun 12, 2025
Abstract:In the digital age, Deepfake present a formidable challenge by using advanced artificial intelligence to create highly convincing manipulated content, undermining information authenticity and security. These sophisticated fabrications surpass traditional detection methods in complexity and realism. To address this issue, we aim to harness cutting-edge deep learning methodologies to engineer an innovative deepfake detection model. However, most of the models designed for deepfake detection are large, causing heavy storage and memory consumption. In this research, we propose a lightweight convolution neural network (CNN) with squeeze and excitation block attention (SE) for Deepfake detection. The SE block module is designed to perform dynamic channel-wise feature recalibration. The SE block allows the network to emphasize informative features and suppress less useful ones, which leads to a more efficient and effective learning module. This module is integrated with a simple sequential model to perform Deepfake detection. The model is smaller in size and it achieves competing accuracy with the existing models for deepfake detection tasks. The model achieved an overall classification accuracy of 94.14% and AUC-ROC score of 0.985 on the Style GAN dataset from the Diverse Fake Face Dataset. Our proposed approach presents a promising avenue for combating the Deepfake challenge with minimal computational resources, developing efficient and scalable solutions for digital content verification.
Via

Jun 12, 2025
Abstract:The growing sophistication of deepfakes presents substantial challenges to the integrity of media and the preservation of public trust. Concurrently, vision-language models (VLMs), large language models enhanced with visual reasoning capabilities, have emerged as promising tools across various domains, sparking interest in their applicability to deepfake detection. This study conducts a structured zero-shot evaluation of four prominent VLMs: ChatGPT, Claude, Gemini, and Grok, focusing on three primary deepfake types: faceswap, reenactment, and synthetic generation. Leveraging a meticulously assembled benchmark comprising authentic and manipulated images from diverse sources, we evaluate each model's classification accuracy and reasoning depth. Our analysis indicates that while VLMs can produce coherent explanations and detect surface-level anomalies, they are not yet dependable as standalone detection systems. We highlight critical failure modes, such as an overemphasis on stylistic elements and vulnerability to misleading visual patterns like vintage aesthetics. Nevertheless, VLMs exhibit strengths in interpretability and contextual analysis, suggesting their potential to augment human expertise in forensic workflows. These insights imply that although general-purpose models currently lack the reliability needed for autonomous deepfake detection, they hold promise as integral components in hybrid or human-in-the-loop detection frameworks.
* 6 pages, 3 figures, and 2 tables. paper is under review
Via

Jun 11, 2025
Abstract:The growing prevalence of real-world deepfakes presents a critical challenge for existing detection systems, which are often evaluated on datasets collected just for scientific purposes. To address this gap, we introduce a novel dataset of real-world audio deepfakes. Our analysis reveals that these real-world examples pose significant challenges, even for the most performant detection models. Rather than increasing model complexity or exhaustively search for a better alternative, in this work we focus on a data-centric paradigm, employing strategies like dataset curation, pruning, and augmentation to improve model robustness and generalization. Through these methods, we achieve a 55% relative reduction in EER on the In-the-Wild dataset, reaching an absolute EER of 1.7%, and a 63% reduction on our newly proposed real-world deepfakes dataset, AI4T. These results highlight the transformative potential of data-centric approaches in enhancing deepfake detection for real-world applications. Code and data available at: https://github.com/davidcombei/AI4T.
* Accepted at Interspeech 2025
Via

Jun 10, 2025
Abstract:This paper introduces a novel multimodal framework for hate speech detection in deepfake audio, excelling even in zero-shot scenarios. Unlike previous approaches, our method uses contrastive learning to jointly align audio and text representations across languages. We present the first benchmark dataset with 127,290 paired text and synthesized speech samples in six languages: English and five low-resource Indian languages (Hindi, Bengali, Marathi, Tamil, Telugu). Our model learns a shared semantic embedding space, enabling robust cross-lingual and cross-modal classification. Experiments on two multilingual test sets show our approach outperforms baselines, achieving accuracies of 0.819 and 0.701, and generalizes well to unseen languages. This demonstrates the advantage of combining modalities for hate speech detection in synthetic media, especially in low-resource settings where unimodal models falter. The Dataset is available at https://www.iab-rubric.org/resources.
* Accepted in Interpseech 2025
Via

Jun 10, 2025
Abstract:Most research efforts in the multimedia forensics domain have focused on detecting forgery audio-visual content and reached sound achievements. However, these works only consider deepfake detection as a classification task and ignore the case where partial segments of the video are tampered with. Temporal forgery localization (TFL) of small fake audio-visual clips embedded in real videos is still challenging and more in line with realistic application scenarios. To resolve this issue, we propose a universal context-aware contrastive learning framework (UniCaCLF) for TFL. Our approach leverages supervised contrastive learning to discover and identify forged instants by means of anomaly detection, allowing for the precise localization of temporal forged segments. To this end, we propose a novel context-aware perception layer that utilizes a heterogeneous activation operation and an adaptive context updater to construct a context-aware contrastive objective, which enhances the discriminability of forged instant features by contrasting them with genuine instant features in terms of their distances to the global context. An efficient context-aware contrastive coding is introduced to further push the limit of instant feature distinguishability between genuine and forged instants in a supervised sample-by-sample manner, suppressing the cross-sample influence to improve temporal forgery localization performance. Extensive experimental results over five public datasets demonstrate that our proposed UniCaCLF significantly outperforms the state-of-the-art competing algorithms.
Via

Jun 09, 2025
Abstract:Deepfakes are AI-synthesized multimedia data that may be abused for spreading misinformation. Deepfake generation involves both visual and audio manipulation. To detect audio-visual deepfakes, previous studies commonly employ two relatively independent sub-models to learn audio and visual features, respectively, and fuse them subsequently for deepfake detection. However, this may underutilize the inherent correlations between audio and visual features. Moreover, utilizing two isolated feature learning sub-models can result in redundant neural layers, making the overall model inefficient and impractical for resource-constrained environments. In this work, we design a lightweight network for audio-visual deepfake detection via a single-stream multi-modal learning framework. Specifically, we introduce a collaborative audio-visual learning block to efficiently integrate multi-modal information while learning the visual and audio features. By iteratively employing this block, our single-stream network achieves a continuous fusion of multi-modal features across its layers. Thus, our network efficiently captures visual and audio features without the need for excessive block stacking, resulting in a lightweight network design. Furthermore, we propose a multi-modal classification module that can boost the dependence of the visual and audio classifiers on modality content. It also enhances the whole resistance of the video classifier against the mismatches between audio and visual modalities. We conduct experiments on the DF-TIMIT, FakeAVCeleb, and DFDC benchmark datasets. Compared to state-of-the-art audio-visual joint detection methods, our method is significantly lightweight with only 0.48M parameters, yet it achieves superiority in both uni-modal and multi-modal deepfakes, as well as in unseen types of deepfakes.
Via

Jun 06, 2025
Abstract:Generative AI advances rapidly, allowing the creation of very realistic manipulated video and audio. This progress presents a significant security and ethical threat, as malicious users can exploit DeepFake techniques to spread misinformation. Recent DeepFake detection approaches explore the multimodal (audio-video) threat scenario. In particular, there is a lack of reproducibility and critical issues with existing datasets - such as the recently uncovered silence shortcut in the widely used FakeAVCeleb dataset. Considering the importance of this topic, we aim to gain a deeper understanding of the key issues affecting benchmarking in audio-video DeepFake detection. We examine these challenges through the lens of the three core benchmarking pillars: datasets, detection methods, and evaluation protocols. To address these issues, we spotlight the recent DeepSpeak v1 dataset and are the first to propose an evaluation protocol and benchmark it using SOTA models. We introduce SImple Multimodal BAseline (SIMBA), a competitive yet minimalistic approach that enables the exploration of diverse design choices. We also deepen insights into the issue of audio shortcuts and present a promising mitigation strategy. Finally, we analyze and enhance the evaluation scheme on the widely used FakeAVCeleb dataset. Our findings offer a way forward in the complex area of audio-video DeepFake detection.
Via

Jun 07, 2025
Abstract:The rise of deepfake audio and hate speech, powered by advanced text-to-speech, threatens online safety. We present SynHate, the first multilingual dataset for detecting hate speech in synthetic audio, spanning 37 languages. SynHate uses a novel four-class scheme: Real-normal, Real-hate, Fake-normal, and Fake-hate. Built from MuTox and ADIMA datasets, it captures diverse hate speech patterns globally and in India. We evaluate five leading self-supervised models (Whisper-small/medium, XLS-R, AST, mHuBERT), finding notable performance differences by language, with Whisper-small performing best overall. Cross-dataset generalization remains a challenge. By releasing SynHate and baseline code, we aim to advance robust, culturally sensitive, and multilingual solutions against synthetic hate speech. The dataset is available at https://www.iab-rubric.org/resources.
* Accepted in Interspeech 2025
Via

Jun 06, 2025
Abstract:Deepfake detection has gained significant attention across audio, text, and image modalities, with high accuracy in distinguishing real from fake. However, identifying the exact source--such as the system or model behind a deepfake--remains a less studied problem. In this paper, we take a significant step forward in audio deepfake model attribution or source tracing by proposing a training-free, green AI approach based entirely on k-Nearest Neighbors (kNN). Leveraging a pre-trained self-supervised learning (SSL) model, we show that grouping samples from the same generator is straightforward--we obtain an 0.93 F1-score across five deepfake datasets. The method also demonstrates strong out-of-domain (OOD) detection, effectively identifying samples from unseen models at an F1-score of 0.84. We further analyse these results in a multi-dimensional approach and provide additional insights. All code and data protocols used in this work are available in our open repository: https://github.com/adrianastan/tada/.
* Accepted at Interspeech 2025
Via

Jun 05, 2025
Abstract:Modern deepfake detection models have achieved strong performance even on the challenging cross-dataset task. However, detection performance under non-ideal conditions remains very unstable, limiting success on some benchmark datasets and making it easy to circumvent detection. Inspired by the move to a more real-world degradation model in the area of image super-resolution, we have developed a Practical Manipulation Model (PMM) that covers a larger set of possible forgeries. We extend the space of pseudo-fakes by using Poisson blending, more diverse masks, generator artifacts, and distractors. Additionally, we improve the detectors' generality and robustness by adding strong degradations to the training images. We demonstrate that these changes not only significantly enhance the model's robustness to common image degradations but also improve performance on standard benchmark datasets. Specifically, we show clear increases of $3.51\%$ and $6.21\%$ AUC on the DFDC and DFDCP datasets, respectively, over the s-o-t-a LAA backbone. Furthermore, we highlight the lack of robustness in previous detectors and our improvements in this regard. Code can be found at https://github.com/BenediktHopf/PMM
Via
