Accurate segmentation of the pancreas and its lesions in CT scans is crucial for the precise diagnosis and treatment of pancreatic cancer. However, it remains a highly challenging task due to several factors such as low tissue contrast with surrounding organs, blurry anatomical boundaries, irregular organ shapes, and the small size of lesions. To tackle these issues, we propose DB-MSMUNet (Dual-Branch Multi-scale Mamba UNet), a novel encoder-decoder architecture designed specifically for robust pancreatic segmentation. The encoder is constructed using a Multi-scale Mamba Module (MSMM), which combines deformable convolutions and multi-scale state space modeling to enhance both global context modeling and local deformation adaptation. The network employs a dual-decoder design: the edge decoder introduces an Edge Enhancement Path (EEP) to explicitly capture boundary cues and refine fuzzy contours, while the area decoder incorporates a Multi-layer Decoder (MLD) to preserve fine-grained details and accurately reconstruct small lesions by leveraging multi-scale deep semantic features. Furthermore, Auxiliary Deep Supervision (ADS) heads are added at multiple scales to both decoders, providing more accurate gradient feedback and further enhancing the discriminative capability of multi-scale features. We conduct extensive experiments on three datasets: the NIH Pancreas dataset, the MSD dataset, and a clinical pancreatic tumor dataset provided by collaborating hospitals. DB-MSMUNet achieves Dice Similarity Coefficients of 89.47%, 87.59%, and 89.02%, respectively, outperforming most existing state-of-the-art methods in terms of segmentation accuracy, edge preservation, and robustness across different datasets. These results demonstrate the effectiveness and generalizability of the proposed method for real-world pancreatic CT segmentation tasks.
In this study, we present ULS+, an enhanced version of the Universal Lesion Segmentation (ULS) model. The original ULS model segments lesions across the whole body in CT scans given volumes of interest (VOIs) centered around a click-point. Since its release, several new public datasets have become available that can further improve model performance. ULS+ incorporates these additional datasets and uses smaller input image sizes, resulting in higher accuracy and faster inference. We compared ULS and ULS+ using the Dice score and robustness to click-point location on the ULS23 Challenge test data and a subset of the Longitudinal-CT dataset. In all comparisons, ULS+ significantly outperformed ULS. Additionally, ULS+ ranks first on the ULS23 Challenge test-phase leaderboard. By maintaining a cycle of data-driven updates and clinical validation, ULS+ establishes a foundation for robust and clinically relevant lesion segmentation models.
Quantifying normative pediatric cranial development and suture ossification is crucial for diagnosing and treating growth-related cephalic disorders. Computed tomography (CT) is widely used to evaluate cranial and sutural deformities; however, its ionizing radiation is contraindicated in children without significant abnormalities. Magnetic resonance imaging (MRI) offers radiation free scans with superior soft tissue contrast, but unlike CT, MRI cannot elucidate cranial sutures, estimate skull bone density, or assess cranial vault growth. This study proposes a deep learning driven pipeline for transforming T1 weighted MRIs of children aged 0.2 to 2 years into synthetic CTs (sCTs), predicting detailed cranial bone segmentation, generating suture probability heatmaps, and deriving direct suture segmentation from the heatmaps. With our in-house pediatric data, sCTs achieved 99% structural similarity and a Frechet inception distance of 1.01 relative to real CTs. Skull segmentation attained an average Dice coefficient of 85% across seven cranial bones, and sutures achieved 80% Dice. Equivalence of skull and suture segmentation between sCTs and real CTs was confirmed using two one sided tests (TOST p < 0.05). To our knowledge, this is the first pediatric cranial CT synthesis framework to enable suture segmentation on sCTs derived from MRI, despite MRI's limited depiction of bone and sutures. By combining robust, domain specific variational autoencoders, our method generates perceptually indistinguishable cranial sCTs from routine pediatric MRIs, bridging critical gaps in non invasive cranial evaluation.
The application of self-supervised learning (SSL) and Vision Transformers (ViTs) approaches demonstrates promising results in the field of 2D medical imaging, but the use of these methods on 3D volumetric images is fraught with difficulties. Standard Masked Autoencoders (MAE), which are state-of-the-art solution for 2D, have a hard time capturing three-dimensional spatial relationships, especially when 75% of tokens are discarded during pre-training. We propose BertsWin, a hybrid architecture combining full BERT-style token masking using Swin Transformer windows, to enhance spatial context learning in 3D during SSL pre-training. Unlike the classic MAE, which processes only visible areas, BertsWin introduces a complete 3D grid of tokens (masked and visible), preserving the spatial topology. And to smooth out the quadratic complexity of ViT, single-level local Swin windows are used. We introduce a structural priority loss function and evaluate the results of cone beam computed tomography of the temporomandibular joints. The subsequent assessment includes TMJ segmentation on 3D CT scans. We demonstrate that the BertsWin architecture, by maintaining a complete three-dimensional spatial topology, inherently accelerates semantic convergence by a factor of 5.8x compared to standard ViT-MAE baselines. Furthermore, when coupled with our proposed GradientConductor optimizer, the full BertsWin framework achieves a 15-fold reduction in training epochs (44 vs 660) required to reach state-of-the-art reconstruction fidelity. Analysis reveals that BertsWin achieves this acceleration without the computational penalty typically associated with dense volumetric processing. At canonical input resolutions, the architecture maintains theoretical FLOP parity with sparse ViT baselines, resulting in a significant net reduction in total computational resources due to faster convergence.
The early detection of pancreatic neoplasm is a major clinical dilemma, and it is predominantly so because tumors are likely to occur with minimal contrast margins and a large spread anatomy-wide variation amongst patients on a CT scan. These complexities require to be addressed with an effective and scalable system that can assist in enhancing the salience of the subtle visual cues and provide a high level of the generalization on the multimodal imaging data. A Scalable Residual Feature Aggregation (SRFA) framework is proposed to be used to meet these conditions in this study. The framework integrates a pipeline of preprocessing followed by the segmentation using the MAGRes-UNet that is effective in making the pancreatic structures and isolating regions of interest more visible. DenseNet-121 performed with residual feature storage is used to extract features to allow deep hierarchical features to be aggregated without properties loss. To go further, hybrid HHO-BA metaheuristic feature selection strategy is used, which guarantees the best feature subset refinement. To be classified, the system is trained based on a new hybrid model that integrates the ability to pay attention on the world, which is the Vision Transformer (ViT) with the high representational efficiency of EfficientNet-B3. A dual optimization mechanism incorporating SSA and GWO is used to fine-tune hyperparameters to enhance greater robustness and less overfitting. Experimental results support the significant improvement in performance, with the suggested model reaching 96.23% accuracy, 95.58% F1-score and 94.83% specificity, the model is significantly better than the traditional CNNs and contemporary transformer-based models. Such results highlight the possibility of the SRFA framework as a useful instrument in the early detection of pancreatic tumors.




Purpose AI-based methods for anatomy segmentation can help automate characterization of large imaging datasets. The growing number of similar in functionality models raises the challenge of evaluating them on datasets that do not contain ground truth annotations. We introduce a practical framework to assist in this task. Approach We harmonize the segmentation results into a standard, interoperable representation, which enables consistent, terminology-based labeling of the structures. We extend 3D Slicer to streamline loading and comparison of these harmonized segmentations, and demonstrate how standard representation simplifies review of the results using interactive summary plots and browser-based visualization using OHIF Viewer. To demonstrate the utility of the approach we apply it to evaluating segmentation of 31 anatomical structures (lungs, vertebrae, ribs, and heart) by six open-source models - TotalSegmentator 1.5 and 2.6, Auto3DSeg, MOOSE, MultiTalent, and CADS - for a sample of Computed Tomography (CT) scans from the publicly available National Lung Screening Trial (NLST) dataset. Results We demonstrate the utility of the framework in enabling automating loading, structure-wise inspection and comparison across models. Preliminary results ascertain practical utility of the approach in allowing quick detection and review of problematic results. The comparison shows excellent agreement segmenting some (e.g., lung) but not all structures (e.g., some models produce invalid vertebrae or rib segmentations). Conclusions The resources developed are linked from https://imagingdatacommons.github.io/segmentation-comparison/ including segmentation harmonization scripts, summary plots, and visualization tools. This work assists in model evaluation in absence of ground truth, ultimately enabling informed model selection.
Accurate segmentation of cancerous lesions from 3D computed tomography (CT) scans is essential for automated treatment planning and response assessment. However, even state-of-the-art models combining self-supervised learning (SSL) pretrained transformers with convolutional decoders are susceptible to out-of-distribution (OOD) inputs, generating confidently incorrect tumor segmentations, posing risks for safe clinical deployment. Existing logit-based methods suffer from task-specific model biases, while architectural enhancements to explicitly detect OOD increase parameters and computational costs. Hence, we introduce a plug-and-play and lightweight post-hoc random forests-based OOD detection framework called RF-Deep that leverages deep features with limited outlier exposure. RF-Deep enhances generalization to imaging variations by repurposing the hierarchical features from the pretrained-then-finetuned backbone encoder, providing task-relevant OOD detection by extracting the features from multiple regions of interest anchored to the predicted tumor segmentations. Hence, it scales to images of varying fields-of-view. We compared RF-Deep against existing OOD detection methods using 1,916 CT scans across near-OOD (pulmonary embolism, negative COVID-19) and far-OOD (kidney cancer, healthy pancreas) datasets. RF-Deep achieved AUROC > 93.50 for the challenging near-OOD datasets and near-perfect detection (AUROC > 99.00) for the far-OOD datasets, substantially outperforming logit-based and radiomics approaches. RF-Deep maintained similar performance consistency across networks of different depths and pretraining strategies, demonstrating its effectiveness as a lightweight, architecture-agnostic approach to enhance the reliability of tumor segmentation from CT volumes.




Incidental findings in CT scans, though often benign, can have significant clinical implications and should be reported following established guidelines. Traditional manual inspection by radiologists is time-consuming and variable. This paper proposes a novel framework that leverages large language models (LLMs) and foundational vision-language models (VLMs) in a plan-and-execute agentic approach to improve the efficiency and precision of incidental findings detection, classification, and reporting for abdominal CT scans. Given medical guidelines for abdominal organs, the process of managing incidental findings is automated through a planner-executor framework. The planner, based on LLM, generates Python scripts using predefined base functions, while the executor runs these scripts to perform the necessary checks and detections, via VLMs, segmentation models, and image processing subroutines. We demonstrate the effectiveness of our approach through experiments on a CT abdominal benchmark for three organs, in a fully automatic end-to-end manner. Our results show that the proposed framework outperforms existing pure VLM-based approaches in terms of accuracy and efficiency.
Reliable measurement of glenoid bone loss is essential for operative planning in shoulder instability, but current manual and semi-automated methods are time-consuming and often subject to interreader variability. We developed and validated a fully automated deep learning pipeline for measuring glenoid bone loss on three-dimensional computed tomography (CT) scans using a linear-based, en-face view, best-circle method. Shoulder CT images of 91 patients (average age, 40 years; range, 14-89 years; 65 men) were retrospectively collected along with manual labels including glenoid segmentation, landmarks, and bone loss measurements. The multi-stage algorithm has three main stages: (1) segmentation, where we developed a U-Net to automatically segment the glenoid and humerus; (2) anatomical landmark detection, where a second network predicts glenoid rim points; and (3) geometric fitting, where we applied principal component analysis (PCA), projection, and circle fitting to compute the percentage of bone loss. The automated measurements showed strong agreement with consensus readings and exceeded surgeon-to-surgeon consistency (intraclass correlation coefficient (ICC) 0.84 vs 0.78), including in low- and high-bone-loss subgroups (ICC 0.71 vs 0.63 and 0.83 vs 0.21, respectively; P < 0.001). For classifying patients into low, medium, and high bone-loss categories, the pipeline achieved a recall of 0.714 for low and 0.857 for high severity, with no low cases misclassified as high or vice versa. These results suggest that our method is a time-efficient and clinically reliable tool for preoperative planning in shoulder instability and for screening patients with substantial glenoid bone loss. Code and dataset are available at https://github.com/Edenliu1/Auto-Glenoid-Measurement-DL-Pipeline.




Accurate airway segmentation from chest computed tomography (CT) scans is essential for quantitative lung analysis, yet manual annotation is impractical and many automated U-Net-based methods yield disconnected components that hinder reliable biomarker extraction. We present RepAir, a three-stage framework for robust 3D airway segmentation that combines an nnU-Net-based network with anatomically informed topology correction. The segmentation network produces an initial airway mask, after which a skeleton-based algorithm identifies potential discontinuities and proposes reconnections. A 1D convolutional classifier then determines which candidate links correspond to true anatomical branches versus false or obstructed paths. We evaluate RepAir on two distinct datasets: ATM'22, comprising annotated CT scans from predominantly healthy subjects and AeroPath, encompassing annotated scans with severe airway pathology. Across both datasets, RepAir outperforms existing 3D U-Net-based approaches such as Bronchinet and NaviAirway on both voxel-level and topological metrics, and produces more complete and anatomically consistent airway trees while maintaining high segmentation accuracy.