Crop classification is the process of identifying and categorizing different types of crops in satellite images.
Data augmentation has long been a cornerstone for reducing overfitting in vision models, with methods like AutoAugment automating the design of task-specific augmentations. Recent advances in generative models, such as conditional diffusion and few-shot NeRFs, offer a new paradigm for data augmentation by synthesizing data with significantly greater diversity and realism. However, unlike traditional augmentations like cropping or rotation, these methods introduce substantial changes that enhance robustness but also risk degrading performance if the augmentations are poorly matched to the task. In this work, we present EvoAug, an automated augmentation learning pipeline, which leverages these generative models alongside an efficient evolutionary algorithm to learn optimal task-specific augmentations. Our pipeline introduces a novel approach to image augmentation that learns stochastic augmentation trees that hierarchically compose augmentations, enabling more structured and adaptive transformations. We demonstrate strong performance across fine-grained classification and few-shot learning tasks. Notably, our pipeline discovers augmentations that align with domain knowledge, even in low-data settings. These results highlight the potential of learned generative augmentations, unlocking new possibilities for robust model training.
The rapid growth of the global population, alongside exponential technological advancement, has intensified the demand for food production. Meeting this demand depends not only on increasing agricultural yield but also on minimizing food loss caused by crop diseases. Diseases account for a substantial portion of apple production losses, despite apples being among the most widely produced and nutritionally valuable fruits worldwide. Previous studies have employed machine learning techniques for feature extraction and early diagnosis of apple leaf diseases, and more recently, deep learning-based models have shown remarkable performance in disease recognition. However, most state-of-the-art deep learning models are highly parameter-intensive, resulting in increased training and inference time. Although lightweight models are more suitable for user-friendly and resource-constrained applications, they often suffer from performance degradation. To address the trade-off between efficiency and performance, we propose Mam-App, a parameter-efficient Mamba-based model for feature extraction and leaf disease classification. The proposed approach achieves competitive state-of-the-art performance on the PlantVillage Apple Leaf Disease dataset, attaining 99.58% accuracy, 99.30% precision, 99.14% recall, and a 99.22% F1-score, while using only 0.051M parameters. This extremely low parameter count makes the model suitable for deployment on drones, mobile devices, and other low-resource platforms. To demonstrate the robustness and generalizability of the proposed model, we further evaluate it on the PlantVillage Corn Leaf Disease and Potato Leaf Disease datasets. The model achieves 99.48%, 99.20%, 99.34%, and 99.27% accuracy, precision, recall, and F1-score on the corn dataset and 98.46%, 98.91%, 95.39%, and 97.01% on the potato dataset, respectively.
Crop type maps from satellite remote sensing are important tools for food security, local livelihood support and climate change mitigation in smallholder regions of the world, but most satellite-based methods are not well suited to smallholder conditions. To address this gap, we establish a four-part criteria for a useful embedding-based approach consisting of 1) performance, 2) plausibility, 3) transferability and 4) accessibility and evaluate geospatial foundation model (FM) embeddings -based approaches using TESSERA and AlphaEarth against current baseline methods for a region in the groundnut basin of Senegal. We find that the TESSERA -based approach to land cover and crop type mapping fulfills the selection criteria best, and in one temporal transfer example shows 28% higher accuracy compared to the next best method. These results indicate that TESSERA embeddings are an effective approach for crop type classification and mapping tasks in Senegal.
The quality of data augmentation serves as a critical determinant for the performance of contrastive learning in EEG tasks. Although this paradigm is promising for utilizing unlabeled data, static or random augmentation strategies often fail to preserve intrinsic information due to the non-stationarity of EEG signals where statistical properties change over time. To address this, we propose RL-BioAug, a framework that leverages a label-efficient reinforcement learning (RL) agent to autonomously determine optimal augmentation policies. While utilizing only a minimal fraction (10%) of labeled data to guide the agent's policy, our method enables the encoder to learn robust representations in a strictly self-supervised manner. Experimental results demonstrate that RL-BioAug significantly outperforms the random selection strategy, achieving substantial improvements of 9.69% and 8.80% in Macro-F1 score on the Sleep-EDFX and CHB-MIT datasets, respectively. Notably, this agent mainly chose optimal strategies for each task--for example, Time Masking with a 62% probability for sleep stage classification and Crop & Resize with a 77% probability for seizure detection. Our framework suggests its potential to replace conventional heuristic-based augmentations and establish a new autonomous paradigm for data augmentation. The source code is available at https://github.com/dlcjfgmlnasa/RL-BioAug.
Deploying deep learning models for plant disease detection on edge devices such as IoT sensors, smartphones, and embedded systems is severely constrained by limited computational resources and energy budgets. To address this challenge, we introduce a novel Dynamic Meta-Ensemble Framework (DMEF) for high-accuracy plant disease diagnosis under resource constraints. DMEF employs an adaptive weighting mechanism that dynamically combines the predictions of three lightweight convolutional neural networks (MobileNetV2, NASNetMobile, and InceptionV3) by optimizing a trade-off between accuracy improvements (DeltaAcc) and computational efficiency (model size). During training, the ensemble weights are updated iteratively, favoring models exhibiting high performance and low complexity. Extensive experiments on benchmark datasets for potato and maize diseases demonstrate state-of-the-art classification accuracies of 99.53% and 96.61%, respectively, surpassing standalone models and static ensembles by 2.1% and 6.3%. With computationally efficient inference latency (<75ms) and a compact footprint (<1 million parameters), DMEF shows strong potential for edge-based agricultural monitoring, suggesting viability for scalable crop disease management. This bridges the gap between high-accuracy AI and practical field applications.
We introduce a lightweight experimentation pipeline designed to lower the barrier for applying machine learning (ML) methods for classifying images in ecological research. We enable ecologists to experiment with ML models independently, thus they can move beyond off-the-shelf models and generate insights tailored to local datasets and specific classification tasks and target variables. Our tool combines a simple command-line interface for preprocessing, training, and evaluation with a graphical interface for annotation, error analysis, and model comparison. This design enables ecologists to build and iterate on compact, task-specific classifiers without requiring advanced ML expertise. As a proof of concept, we apply the pipeline to classify red deer (Cervus elaphus) by age and sex from 3392 camera trap images collected in the Veldenstein Forest, Germany. Using 4352 cropped images containing individual deer labeled by experts, we trained and evaluated multiple backbone architectures with a wide variety of parameters and data augmentation strategies. Our best-performing models achieved 90.77% accuracy for age classification and 96.15% for sex classification. These results demonstrate that reliable demographic classification is feasible even with limited data to answer narrow, well-defined ecological problems. More broadly, the framework provides ecologists with an accessible tool for developing ML models tailored to specific research questions, paving the way for broader adoption of ML in wildlife monitoring and demographic analysis.
Convolutional neural networks (CNNs) have achieved state-of-the-art performance in image recognition tasks but often involve complex architectures that may overfit on small datasets. In this study, we evaluate a compact CNN across five publicly available, real-world image datasets from Bangladesh, including urban encroachment, vehicle detection, road damage, and agricultural crops. The network demonstrates high classification accuracy, efficient convergence, and low computational overhead. Quantitative metrics and saliency analyses indicate that the model effectively captures discriminative features and generalizes robustly across diverse scenarios, highlighting the suitability of streamlined CNN architectures for small-class image classification tasks.
Visual question answering for crop disease analysis requires accurate visual understanding and reliable language generation. This work presents a lightweight vision-language framework for crop and disease identification from leaf images. The proposed approach combines a Swin Transformer vision encoder with sequence-to-sequence language decoders. A two-stage training strategy is adopted to improve visual representation learning and cross-modal alignment. The model is evaluated on a large-scale crop disease dataset using classification and natural language generation metrics. Experimental results show high accuracy for both crop and disease identification. The framework also achieves strong performance on BLEU, ROUGE and BERTScore. Our proposed models outperform large-scale vision-language baselines while using significantly fewer parameters. Explainability is assessed using Grad-CAM and token-level attribution. Qualitative results demonstrate robust performance under diverse user-driven queries. These findings highlight the effectiveness of task-specific visual pretraining for crop disease visual question answering.
Multimodal large language models (MLLMs) demonstrate exceptional capabilities in semantic understanding and visual reasoning, yet they still face challenges in precise object localization and resource-constrained edge-cloud deployment. To address this, this paper proposes the AIVD framework, which achieves unified precise localization and high-quality semantic generation through the collaboration between lightweight edge detectors and cloud-based MLLMs. To enhance the cloud MLLM's robustness against edge cropped-box noise and scenario variations, we design an efficient fine-tuning strategy with visual-semantic collaborative augmentation, significantly improving classification accuracy and semantic consistency. Furthermore, to maintain high throughput and low latency across heterogeneous edge devices and dynamic network conditions, we propose a heterogeneous resource-aware dynamic scheduling algorithm. Experimental results demonstrate that AIVD substantially reduces resource consumption while improving MLLM classification performance and semantic generation quality. The proposed scheduling strategy also achieves higher throughput and lower latency across diverse scenarios.
Plant disease diagnosis is essential to farmers' management choices because plant diseases frequently lower crop yield and product quality. For harvests to flourish and agricultural productivity to boost, grape leaf disease detection is important. The plant disease dataset contains grape leaf diseases total of 9,032 images of four classes, among them three classes are leaf diseases, and the other one is healthy leaves. After rigorous pre-processing dataset was split (70% training, 20% validation, 10% testing), and two pre-trained models were deployed: InceptionV3 and Xception. Xception shows a promising result of 96.23% accuracy, which is remarkable than InceptionV3. Adversarial Training is used for robustness, along with more transparency. Grad-CAM is integrated to confirm the leaf disease. Finally deployed a web application using Streamlit with a heatmap visualization and prediction with confidence level for robust grape leaf disease classification.