Abstract:Physics-inspired computing paradigms are receiving renewed attention to enhance efficiency in compute-intensive tasks such as artificial intelligence and optimization. Similar to Hopfield neural networks, oscillatory neural networks (ONNs) minimize an Ising energy function that embeds the solutions of hard combinatorial optimization problems. Despite their success in solving unconstrained optimization problems, Ising machines still face challenges with constrained problems as they can get stuck at infeasible local minima. In this paper, we introduce a Lagrange ONN (LagONN) designed to escape infeasible states based on the theory of Lagrange multipliers. Unlike existing oscillatory Ising machines, LagONN employs additional Lagrange oscillators to guide the system towards feasible states in an augmented energy landscape and settles only when constraints are met. Taking the maximum satisfiability problem with three literals as a use case (Max-3-SAT), we harness LagONN's constraint satisfaction mechanism to find optimal solutions for random SATlib instances with up to 200 variables and 860 clauses, which provides a deterministic alternative to simulated annealing for coupled oscillators. We further discuss the potential of Lagrange oscillators to address other constraints, such as phase copying, which is useful in oscillatory Ising machines with limited connectivity.
Abstract:This paper investigated the potential of a multivariate Transformer model to forecast the temporal trajectory of the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) for short (1 month) and long horizon (more than 1 month) periods at the regional level in Europe and North Africa. The input data covers the period from 2002 to 2022 and includes remote sensing and weather data for modelling FAPAR predictions. The model was evaluated using a leave one year out cross-validation and compared with the climatological benchmark. Results show that the transformer model outperforms the benchmark model for one month forecasting horizon, after which the climatological benchmark is better. The RMSE values of the transformer model ranged from 0.02 to 0.04 FAPAR units for the first 2 months of predictions. Overall, the tested Transformer model is a valid method for FAPAR forecasting, especially when combined with weather data and used for short-term predictions.
Abstract:Spatially consistent and up-to-date maps of human settlements are crucial for addressing policies related to urbanization and sustainability especially in the era of an increasingly urbanized world. The availability of open and free Sentinel-2 data of the Copernicus Earth Observation programme offers a new opportunity for wall-to-wall mapping of human settlements at a global scale. This paper presents a deep-learning-based framework for a fully automated extraction of built-up areas at a spatial resolution of 10 meters from a global composite of Sentinel-2 imagery. A multi-neuro modelling methodology, building on a simple Convolution Neural Networks architecture for pixel-wise image classification of built-up areas is developed. The deployment of the model on the global Sentinel-2 image composite provides the most detailed and complete map reporting about built-up areas for reference year 2018. The validation of the results with an independent reference dataset of building footprints covering 277 sites across the world, establishes the reliability of the built-up layer produced by the proposed framework and the model robustness. The results of this study contribute to cutting-edge research in the field of automated built-up areas mapping from remote sensing data and establish a new reference layer for the analysis of the spatial distribution of human settlements across the rural-urban continuum