Autonomous cars are self-driving vehicles that use artificial intelligence (AI) and sensors to navigate and operate without human intervention, using high-resolution cameras and lidars that detect what happens in the car's immediate surroundings. They have the potential to revolutionize transportation by improving safety, efficiency, and accessibility.
Maintaining stability in feedback systems, from aircraft and autonomous robots to biological and physiological systems, relies on monitoring their behavior and continuously adjusting their inputs. Incremental damage can make such control fragile. This tends to go unnoticed until a small perturbation induces instability (i.e. loss of control). Traditional methods in the field of engineering rely on accurate system models to compute a safe set of operating instructions, which become invalid when the, possibly damaged, system diverges from its model. Here we demonstrate that the approach of such a feedback system towards instability can nonetheless be monitored through dynamical indicators of resilience. This holistic system safety monitor does not rely on a system model and is based on the generic phenomenon of critical slowing down, shown to occur in the climate, biology and other complex nonlinear systems approaching criticality. Our findings for engineered devices opens up a wide range of applications involving real-time early warning systems as well as an empirical guidance of resilient system design exploration, or "tinkering". While we demonstrate the validity using drones, the generic nature of the underlying principles suggest that these indicators could apply across a wider class of controlled systems including reactors, aircraft, and self-driving cars.
Over the past decade, a wide range of motion planning approaches for autonomous vehicles has been developed to handle increasingly complex traffic scenarios. However, these approaches are rarely compared on standardized benchmarks, limiting the assessment of relative strengths and weaknesses. To address this gap, we present the setup and results of the 4th CommonRoad Motion Planning Competition held in 2024, conducted using the CommonRoad benchmark suite. This annual competition provides an open-source and reproducible framework for benchmarking motion planning algorithms. The benchmark scenarios span highway and urban environments with diverse traffic participants, including passenger cars, buses, and bicycles. Planner performance is evaluated along four dimensions: efficiency, safety, comfort, and compliance with selected traffic rules. This report introduces the competition format and provides a comparison of representative high-performing planners from the 2023 and 2024 editions.
Recent years have witnessed significant progress in the development of machine learning models across a wide range of fields, fueled by increased computational resources, large-scale datasets, and the rise of deep learning architectures. From malware detection to enabling autonomous navigation, modern machine learning systems have demonstrated remarkable capabilities. However, as these models are deployed in ever-changing real-world scenarios, their ability to remain reliable and adaptive over time becomes increasingly important. For example, in the real world, new malware families are continuously developed, whereas autonomous driving cars are employed in many different cities and weather conditions. Models trained in fixed settings can not respond effectively to novel conditions encountered post-deployment. In fact, most machine learning models are still developed under the assumption that training and test data are independent and identically distributed (i.i.d.), i.e., sampled from the same underlying (unknown) distribution. While this assumption simplifies model development and evaluation, it does not hold in many real-world applications, where data changes over time and unexpected inputs frequently occur. Retraining models from scratch whenever new data appears is computationally expensive, time-consuming, and impractical in resource-constrained environments. These limitations underscore the need for Continual Learning (CL), which enables models to incrementally learn from evolving data streams without forgetting past knowledge, and Out-of-Distribution (OOD) detection, which allows systems to identify and respond to novel or anomalous inputs. Jointly addressing both challenges is critical to developing robust, efficient, and adaptive AI systems.
Understanding driver interactions is critical to designing autonomous vehicles to interoperate safely with human-driven cars. We consider the impact of these interactions on the policies drivers employ when navigating unsigned intersections in a driving simulator. The simulator allows the collection of naturalistic decision-making and behavior data in a controlled environment. Using these data, we model the human driver responses as state-based feedback controllers learned via Gaussian Process regression methods. We compute the feedback gain of the controller using a weighted combination of linear and nonlinear priors. We then analyze how the individual gains are reflected in driver behavior. We also assess differences in these controllers across populations of drivers. Our work in data-driven analyses of how drivers determine their policies can facilitate future work in the design of socially responsive autonomy for vehicles.
CAR-Scenes is a frame-level dataset for autonomous driving that enables training and evaluation of vision-language models (VLMs) for interpretable, scene-level understanding. We annotate 5,192 images drawn from Argoverse 1, Cityscapes, KITTI, and nuScenes using a 28-key category/sub-category knowledge base covering environment, road geometry, background-vehicle behavior, ego-vehicle behavior, vulnerable road users, sensor states, and a discrete severity scale (1-10), totaling 350+ leaf attributes. Labels are produced by a GPT-4o-assisted vision-language pipeline with human-in-the-loop verification; we release the exact prompts, post-processing rules, and per-field baseline model performance. CAR-Scenes also provides attribute co-occurrence graphs and JSONL records that support semantic retrieval, dataset triage, and risk-aware scenario mining across sources. To calibrate task difficulty, we include reproducible, non-benchmark baselines, notably a LoRA-tuned Qwen2-VL-2B with deterministic decoding, evaluated via scalar accuracy, micro-averaged F1 for list attributes, and severity MAE/RMSE on a fixed validation split. We publicly release the annotation and analysis scripts, including graph construction and evaluation scripts, to enable explainable, data-centric workflows for future intelligent vehicles. Dataset: https://github.com/Croquembouche/CAR-Scenes
Chimeric antigen receptor T-cell (CAR-T) therapy represents a paradigm shift in cancer treatment, yet development timelines of 8-12 years and clinical attrition rates exceeding 40-60% highlight critical inefficiencies in target selection, safety assessment, and molecular optimization. We present Bio AI Agent, a multi-agent artificial intelligence system powered by large language models that enables autonomous CAR-T development through collaborative specialized agents. The system comprises six autonomous agents: Target Selection Agent for multi-parametric antigen prioritization across >10,000 cancer-associated targets, Toxicity Prediction Agent for comprehensive safety profiling integrating tissue expression atlases and pharmacovigilance databases, Molecular Design Agent for rational CAR engineering, Patent Intelligence Agent for freedom-to-operate analysis, Clinical Translation Agent for regulatory compliance, and Decision Orchestration Agent for multi-agent coordination. Retrospective validation demonstrated autonomous identification of high-risk targets including FcRH5 (hepatotoxicity) and CD229 (off-tumor toxicity), patent infringement risks for CD38+SLAMF7 combinations, and generation of comprehensive development roadmaps. By enabling parallel processing, specialized reasoning, and autonomous decision-making superior to monolithic AI systems, Bio AI Agent addresses critical gaps in precision oncology development and has potential to accelerate translation of next-generation immunotherapies from discovery to clinic.
Autonomous racing offers a rigorous setting to stress test perception, planning, and control under high speed and uncertainty. This paper proposes an approach to design and evaluate a software stack for an autonomous race car in CARLA: Car Learning to Act simulator, targeting competitive driving performance in the Formula Student UK Driverless (FS-AI) 2025 competition. By utilizing a 360° light detection and ranging (LiDAR), stereo camera, global navigation satellite system (GNSS), and inertial measurement unit (IMU) sensor via ROS 2 (Robot Operating System), the system reliably detects the cones marking the track boundaries at distances of up to 35 m. Optimized trajectories are computed considering vehicle dynamics and simulated environmental factors such as visibility and lighting to navigate the track efficiently. The complete autonomous stack is implemented in ROS 2 and validated extensively in CARLA on a dedicated vehicle (ADS-DV) before being ported to the actual hardware, which includes the Jetson AGX Orin 64GB, ZED2i Stereo Camera, Robosense Helios 16P LiDAR, and CHCNAV Inertial Navigation System (INS).
Monocular 3D object detection offers a cost-effective solution for autonomous driving but suffers from ill-posed depth and limited field of view. These constraints cause a lack of geometric cues and reduced accuracy in occluded or truncated scenes. While recent approaches incorporate additional depth information to address geometric ambiguity, they overlook the visual cues crucial for robust recognition. We propose MonoCLUE, which enhances monocular 3D detection by leveraging both local clustering and generalized scene memory of visual features. First, we perform K-means clustering on visual features to capture distinct object-level appearance parts (e.g., bonnet, car roof), improving detection of partially visible objects. The clustered features are propagated across regions to capture objects with similar appearances. Second, we construct a generalized scene memory by aggregating clustered features across images, providing consistent representations that generalize across scenes. This improves object-level feature consistency, enabling stable detection across varying environments. Lastly, we integrate both local cluster features and generalized scene memory into object queries, guiding attention toward informative regions. Exploiting a unified local clustering and generalized scene memory strategy, MonoCLUE enables robust monocular 3D detection under occlusion and limited visibility, achieving state-of-the-art performance on the KITTI benchmark.
Safe planning of an autonomous agent in interactive environments -- such as the control of a self-driving vehicle among pedestrians and human-controlled vehicles -- poses a major challenge as the behavior of the environment is unknown and reactive to the behavior of the autonomous agent. This coupling gives rise to interaction-driven distribution shifts where the autonomous agent's control policy may change the environment's behavior, thereby invalidating safety guarantees in existing work. Indeed, recent works have used conformal prediction (CP) to generate distribution-free safety guarantees using observed data of the environment. However, CP's assumption on data exchangeability is violated in interactive settings due to a circular dependency where a control policy update changes the environment's behavior, and vice versa. To address this gap, we propose an iterative framework that robustly maintains safety guarantees across policy updates by quantifying the potential impact of a planned policy update on the environment's behavior. We realize this via adversarially robust CP where we perform a regular CP step in each episode using observed data under the current policy, but then transfer safety guarantees across policy updates by analytically adjusting the CP result to account for distribution shifts. This adjustment is performed based on a policy-to-trajectory sensitivity analysis, resulting in a safe, episodic open-loop planner. We further conduct a contraction analysis of the system providing conditions under which both the CP results and the policy updates are guaranteed to converge. We empirically demonstrate these safety and convergence guarantees on a two-dimensional car-pedestrian case study. To the best of our knowledge, these are the first results that provide valid safety guarantees in such interactive settings.
Accurate accident anticipation is essential for enhancing the safety of autonomous vehicles (AVs). However, existing methods often assume ideal conditions, overlooking challenges such as sensor failures, environmental disturbances, and data imperfections, which can significantly degrade prediction accuracy. Additionally, previous models have not adequately addressed the considerable variability in driver behavior and accident rates across different vehicle types. To overcome these limitations, this study introduces ROAR, a novel approach for accident detection and prediction. ROAR combines Discrete Wavelet Transform (DWT), a self adaptive object aware module, and dynamic focal loss to tackle these challenges. The DWT effectively extracts features from noisy and incomplete data, while the object aware module improves accident prediction by focusing on high-risk vehicles and modeling the spatial temporal relationships among traffic agents. Moreover, dynamic focal loss mitigates the impact of class imbalance between positive and negative samples. Evaluated on three widely used datasets, Dashcam Accident Dataset (DAD), Car Crash Dataset (CCD), and AnAn Accident Detection (A3D), our model consistently outperforms existing baselines in key metrics such as Average Precision (AP) and mean Time to Accident (mTTA). These results demonstrate the model's robustness in real-world conditions, particularly in handling sensor degradation, environmental noise, and imbalanced data distributions. This work offers a promising solution for reliable and accurate accident anticipation in complex traffic environments.