This paper describes the OUNLP system submitted to the TSAR-2025 Shared Task (Alva-Manchego et al., 2025), designed for readability-controlled text simplification using LLM-prompting-based generation. Based on the analysis of prompt-based text simplification methods, we discovered an interesting finding that text simplification performance is highly related to the gap between the source CEFR (Arase et al., 2022) level and the target CEFR level. Inspired by this finding, we propose two multi-round simplification methods and generate them via GPT-4o: rule-based simplification (MRS-Rule) and jointly rule-based LLM simplification (MRS-Joint). Our submitted systems ranked 7 out of 20 teams. Later improvements with MRS-Joint show that taking the LLM simplified candidates as the starting point could further boost the multi-round simplification performance.
We present a multi-task framework for the MediaEval Medico 2025 challenge, leveraging a LoRA-tuned Florence-2 model for simultaneous visual question answering (VQA), explanation generation, and visual grounding. The proposed system integrates three curated datasets: (1) Kvasir-VQA-x1 for question-answer learning, (2) a synthetically enriched explanation dataset offering structured medical reasoning, and (3) text-to-region pairs linking visual features with segmentation masks. This multi-task setup enables the model to jointly learn visual grounding, reasoning, and interpretation, producing responses that are both accurate and interpretable. Extensive evaluation demonstrates that our approach substantially improves over single-task baselines in both answer accuracy and visual localization, highlighting the effectiveness of grounded multi-task learning for medical VQA applications.
Phishing emails continue to pose a persistent challenge to online communication, exploiting human trust and evading automated filters through realistic language and adaptive tactics. While large language models (LLMs) such as GPT-4 and LLaMA-3-8B achieve strong accuracy in text classification, their deployment in security systems requires assessing reliability beyond benchmark performance. To address this, this study introduces the Trustworthiness Calibration Framework (TCF), a reproducible methodology for evaluating phishing detectors across three dimensions: calibration, consistency, and robustness. These components are integrated into a bounded index, the Trustworthiness Calibration Index (TCI), and complemented by the Cross-Dataset Stability (CDS) metric that quantifies stability of trustworthiness across datasets. Experiments conducted on five corpora, such as SecureMail 2025, Phishing Validation 2024, CSDMC2010, Enron-Spam, and Nazario, using DeBERTa-v3-base, LLaMA-3-8B, and GPT-4 demonstrate that GPT-4 achieves the strongest overall trust profile, followed by LLaMA-3-8B and DeBERTa-v3-base. Statistical analysis confirms that reliability varies independently of raw accuracy, underscoring the importance of trust-aware evaluation for real-world deployment. The proposed framework establishes a transparent and reproducible foundation for assessing model dependability in LLM-based phishing detection.
This paper introduces a theoretical framework to resolve a central paradox in modern machine learning: When is it better to use less data? This question has become critical as classical scaling laws suggesting ``more is more'' (Sun et al., 2025) are challenged by methods like LIMO (``less is more'') and s1 (Ye et al., 2025; Muenighoff et al., 2025), which achieve superior performance with small, aggressively curated datasets. Here, we study data curation strategies where an imperfect oracle selects the training examples according to their difficulty and correctness. Our results provide exact scaling law curves for test error under both label-agnostic and label-aware curation rules, revealing when and why keeping only a subset of data can improve generalization. In contrast to classical scaling laws, we show that under certain conditions, small curated datasets can outperform full datasets, and we provide analytical conditions for this by deriving precise phase transition curves tied to data size and quality. We validate these theoretical claims with empirical results on ImageNet, confirming our predictions about when curation improves accuracy and can even mitigate model collapse. Furthermore, our framework provides a principled explanation for the contradictory curation strategies recently observed in LLM mathematical reasoning.
As the "agentic web" takes shape-billions of AI agents (often LLM-powered) autonomously transacting and collaborating-trust shifts from human oversight to protocol design. In 2025, several inter-agent protocols crystallized this shift, including Google's Agent-to-Agent (A2A), Agent Payments Protocol (AP2), and Ethereum's ERC-8004 "Trustless Agents," yet their underlying trust assumptions remain under-examined. This paper presents a comparative study of trust models in inter-agent protocol design: Brief (self- or third-party verifiable claims), Claim (self-proclaimed capabilities and identity, e.g. AgentCard), Proof (cryptographic verification, including zero-knowledge proofs and trusted execution environment attestations), Stake (bonded collateral with slashing and insurance), Reputation (crowd feedback and graph-based trust signals), and Constraint (sandboxing and capability bounding). For each, we analyze assumptions, attack surfaces, and design trade-offs, with particular emphasis on LLM-specific fragilities-prompt injection, sycophancy/nudge-susceptibility, hallucination, deception, and misalignment-that render purely reputational or claim-only approaches brittle. Our findings indicate no single mechanism suffices. We argue for trustless-by-default architectures anchored in Proof and Stake to gate high-impact actions, augmented by Brief for identity and discovery and Reputation overlays for flexibility and social signals. We comparatively evaluate A2A, AP2, ERC-8004 and related historical variations in academic research under metrics spanning security, privacy, latency/cost, and social robustness (Sybil/collusion/whitewashing resistance). We conclude with hybrid trust model recommendations that mitigate reputation gaming and misinformed LLM behavior, and we distill actionable design guidelines for safer, interoperable, and scalable agent economies.
State-of-the-art (SOTA) LLMs have progressed from struggling on proof-based Olympiad problems to solving most of the IMO 2025 problems, with leading systems reportedly handling 5 of 6 problems. Given this progress, we assess how well these models can grade proofs: detecting errors, judging their severity, and assigning fair scores beyond binary correctness. We study proof-analysis capabilities using a corpus of 90 Gemini 2.5 Pro-generated solutions that we grade on a 1-4 scale with detailed error annotations, and on MathArena solution sets for IMO/USAMO 2025 scored on a 0-7 scale. Our analysis shows that models can reliably flag incorrect (including subtly incorrect) solutions but exhibit calibration gaps in how partial credit is assigned. To address this, we introduce agentic workflows that extract and analyze reference solutions and automatically derive problem-specific rubrics for a multi-step grading process. We instantiate and compare different design choices for the grading workflows, and evaluate their trade-offs. Across our annotated corpus and MathArena, our proposed workflows achieve higher agreement with human grades and more consistent handling of partial credit across metrics. We release all code, data, and prompts/logs to facilitate future research.
We investigate the mechanisms by which medium-frequency trading agents are adversely selected by opportunistic high-frequency traders. We use reinforcement learning (RL) within a Hawkes Limit Order Book (LOB) model in order to replicate the behaviours of high-frequency market makers. In contrast to the classical models with exogenous price impact assumptions, the Hawkes model accounts for endogenous price impact and other key properties of the market (Jain et al. 2024a). Given the real-world impracticalities of the market maker updating strategies for every event in the LOB, we formulate the high-frequency market making agent via an impulse control reinforcement learning framework (Jain et al. 2025). The RL used in the simulation utilises Proximal Policy Optimisation (PPO) and self-imitation learning. To replicate the adverse selection phenomenon, we test the RL agent trading against a medium frequency trader (MFT) executing a meta-order and demonstrate that, with training against the MFT meta-order execution agent, the RL market making agent learns to capitalise on the price drift induced by the meta-order. Recent empirical studies have shown that medium-frequency traders are increasingly subject to adverse selection by high-frequency trading agents. As high-frequency trading continues to proliferate across financial markets, the slippage costs incurred by medium-frequency traders are likely to increase over time. However, we do not observe that increased profits for the market making RL agent necessarily cause significantly increased slippages for the MFT agent.
The ODELIA Breast MRI Challenge 2025 addresses a critical issue in breast cancer screening: improving early detection through more efficient and accurate interpretation of breast MRI scans. Even though methods for general-purpose whole-body lesion segmentation as well as multi-time-point analysis exist, breast cancer detection remains highly challenging, largely due to the limited availability of high-quality segmentation labels. Therefore, developing robust classification-based approaches is crucial for the future of early breast cancer detection, particularly in applications such as large-scale screening. In this write-up, we provide a comprehensive overview of our approach to the challenge. We begin by detailing the underlying concept and foundational assumptions that guided our work. We then describe the iterative development process, highlighting the key stages of experimentation, evaluation, and refinement that shaped the evolution of our solution. Finally, we present the reasoning and evidence that informed the design choices behind our final submission, with a focus on performance, robustness, and clinical relevance. We release our full implementation publicly at https://github.com/MIC-DKFZ/MeisenMeister
An LLM's factuality and refusal training can be compromised by simple changes to a prompt. Models often adopt user beliefs (sycophancy) or satisfy inappropriate requests which are wrapped within special text (jailbreaking). We explore \emph{consistency training}, a self-supervised paradigm that teaches a model to be invariant to certain irrelevant cues in the prompt. Instead of teaching the model what exact response to give on a particular prompt, we aim to teach the model to behave identically across prompt data augmentations (like adding leading questions or jailbreak text). We try enforcing this invariance in two ways: over the model's external outputs (\emph{Bias-augmented Consistency Training} (BCT) from Chua et al. [2025]) and over its internal activations (\emph{Activation Consistency Training} (ACT), a method we introduce). Both methods reduce Gemini 2.5 Flash's susceptibility to irrelevant cues. Because consistency training uses responses from the model itself as training data, it avoids issues that arise from stale training data, such as degrading model capabilities or enforcing outdated response guidelines. While BCT and ACT reduce sycophancy equally well, BCT does better at jailbreak reduction. We think that BCT can simplify training pipelines by removing reliance on static datasets. We argue that some alignment problems are better viewed not in terms of optimal responses, but rather as consistency issues.
We study the problem of length generalization (LG) in transformers: the ability of a model trained on shorter sequences to maintain performance when evaluated on much longer, previously unseen inputs. Prior work by Huang et al. (2025) established that transformers eventually achieve length generalization once the training sequence length exceeds some finite threshold, but left open the question of how large it must be. In this work, we provide the first quantitative bounds on the required training length for length generalization to occur. Motivated by previous empirical and theoretical work, we analyze LG in several distinct problem settings: $\ell_\infty$ error control vs. average error control over an input distribution, infinite-precision softmax attention vs. finite-precision attention (which reduces to an argmax) in the transformer, and one- vs. two-layer transformers. In all scenarios, we prove that LG occurs when the internal behavior of the transformer on longer sequences can be "simulated" by its behavior on shorter sequences seen during training. Our bounds give qualitative estimates for the length of training data required for a transformer to generalize, and we verify these insights empirically. These results sharpen our theoretical understanding of the mechanisms underlying extrapolation in transformers, and formalize the intuition that richer training data is required for generalization on more complex tasks.