As generative artificial intelligence advances, Large Language Models (LLMs) are being explored for automated graphical user interface (GUI) design. This study investigates the usability and adaptability of LLM-generated interfaces by analysing their ability to meet diverse user needs. The experiments included utilization of three state-of-the-art models from January 2025 (OpenAI GPT o3-mini-high, DeepSeek R1, and Anthropic Claude 3.5 Sonnet) generating mockups for three interface types: a chat system, a technical team panel, and a manager dashboard. Expert evaluations revealed that while LLMs are effective at creating structured layouts, they face challenges in meeting accessibility standards and providing interactive functionality. Further testing showed that LLMs could partially tailor interfaces for different user personas but lacked deeper contextual understanding. The results suggest that while LLMs are promising tools for early-stage UI prototyping, human intervention remains critical to ensure usability, accessibility, and user satisfaction.
This study introduces a novel approach for early Type 2 Diabetes Mellitus (T2DM) risk prediction using a tabular transformer (TabTrans) architecture to analyze longitudinal patient data. By processing patients` longitudinal health records and bone-related tabular data, our model captures complex, long-range dependencies in disease progression that conventional methods often overlook. We validated our TabTrans model on a retrospective Qatar BioBank (QBB) cohort of 1,382 subjects, comprising 725 men (146 diabetic, 579 healthy) and 657 women (133 diabetic, 524 healthy). The study integrated electronic health records (EHR) with dual-energy X-ray absorptiometry (DXA) data. To address class imbalance, we employed SMOTE and SMOTE-ENN resampling techniques. The proposed model`s performance is evaluated against conventional machine learning (ML) and generative AI models, including Claude 3.5 Sonnet (Anthropic`s constitutional AI), GPT-4 (OpenAI`s generative pre-trained transformer), and Gemini Pro (Google`s multimodal language model). Our TabTrans model demonstrated superior predictive performance, achieving ROC AUC $\geq$ 79.7 % for T2DM prediction compared to both generative AI models and conventional ML approaches. Feature interpretation analysis identified key risk indicators, with visceral adipose tissue (VAT) mass and volume, ward bone mineral density (BMD) and bone mineral content (BMC), T and Z-scores, and L1-L4 scores emerging as the most important predictors associated with diabetes development in Qatari adults. These findings demonstrate the significant potential of TabTrans for analyzing complex tabular healthcare data, providing a powerful tool for proactive T2DM management and personalized clinical interventions in the Qatari population. Index Terms: tabular transformers, multimodal data, DXA data, diabetes, T2DM, feature interpretation, tabular data
Large Language Models are increasingly deployed as educational tools, yet existing benchmarks focus on narrow skills and lack grounding in learning sciences. We introduce OpenLearnLM Benchmark, a theory-grounded framework evaluating LLMs across three dimensions derived from educational assessment theory: Knowledge (curriculum-aligned content and pedagogical understanding), Skills (scenario-based competencies organized through a four-level center-role-scenario-subscenario hierarchy), and Attitude (alignment consistency and deception resistance). Our benchmark comprises 124K+ items spanning multiple subjects, educational roles, and difficulty levels based on Bloom's taxonomy. The Knowledge domain prioritizes authentic assessment items from established benchmarks, while the Attitude domain adapts Anthropic's Alignment Faking methodology to detect behavioral inconsistency under varying monitoring conditions. Evaluation of seven frontier models reveals distinct capability profiles: Claude-Opus-4.5 excels in practical skills despite lower content knowledge, while Grok-4.1-fast leads in knowledge but shows alignment concerns. Notably, no single model dominates all dimensions, validating the necessity of multi-axis evaluation. OpenLearnLM provides an open, comprehensive framework for advancing LLM readiness in authentic educational contexts.
AI model documentation is fragmented across platforms and inconsistent in structure, preventing policymakers, auditors, and users from reliably assessing safety claims, data provenance, and version-level changes. We analyzed documentation from five frontier models (Gemini 3, Grok 4.1, Llama 4, GPT-5, and Claude 4.5) and 100 Hugging Face model cards, identifying 947 unique section names with extreme naming variation. Usage information alone appeared under 97 distinct labels. Using the EU AI Act Annex IV and the Stanford Transparency Index as baselines, we developed a weighted transparency framework with 8 sections and 23 subsections that prioritizes safety-critical disclosures (Safety Evaluation: 25%, Critical Risk: 20%) over technical specifications. We implemented an automated multi-agent pipeline that extracts documentation from public sources and scores completeness through LLM-based consensus. Evaluating 50 models across vision, multimodal, open-source, and closed-source systems cost less than $3 in total and revealed systematic gaps. Frontier labs (xAI, Microsoft, Anthropic) achieve approximately 80% compliance, while most providers fall below 60%. Safety-critical categories show the largest deficits: deception behaviors, hallucinations, and child safety evaluations account for 148, 124, and 116 aggregate points lost, respectively, across all evaluated models.




Big Language Models (LLMs) are changing the way businesses use software, the way people live their lives and the way industries work. Companies like Google, High-Flyer, Anthropic, OpenAI and Meta are making better LLMs. So, it's crucial to look at how each model is different in terms of performance, moral behaviour and usability, as these differences are based on the different ideas that built them. This study compares five top LLMs: Google's Gemini, High-Flyer's DeepSeek, Anthropic's Claude, OpenAI's GPT models and Meta's LLaMA. It performs this by analysing three important factors: Performance and Accuracy, Ethics and Bias Mitigation and Usability and Integration. It was found that Claude has good moral reasoning, Gemini is better at multimodal capabilities and has strong ethical frameworks. DeepSeek is great at reasoning based on facts, LLaMA is good for open applications and ChatGPT delivers balanced performance with a focus on usage. It was concluded that these models are different in terms of how well they work, how easy they are to use and how they treat people ethically, making it a point that each model should be utilised by the user in a way that makes the most of its strengths.
As Large Language Models (LLMs) continue to evolve, practitioners face increasing options for enhancing inference-time performance without model retraining, including budget tuning and multi-step techniques like self-reflection. While these methods improve output quality, they create complex trade-offs among accuracy, cost, and latency that remain poorly understood across different domains. This paper systematically compares self-reflection and budget tuning across mathematical reasoning and translation tasks. We evaluate prominent LLMs, including Anthropic Claude, Amazon Nova, and Mistral families, along with other models under varying reflection depths and compute budgets to derive Pareto optimal performance frontiers. Our analysis reveals substantial domain dependent variation in self-reflection effectiveness, with performance gains up to 220\% in mathematical reasoning. We further investigate how reflection round depth and feedback mechanism quality influence performance across model families. To validate our findings in a real-world setting, we deploy a self-reflection enhanced marketing content localisation system at Lounge by Zalando, where it shows market-dependent effectiveness, reinforcing the importance of domain specific evaluation when deploying these techniques. Our results provide actionable guidance for selecting optimal inference strategies given specific domains and resource constraints. We open source our self-reflection implementation for reproducibility at https://github.com/aws-samples/sample-genai-reflection-for-bedrock.




This study explores the explainability capabilities of large language models (LLMs), when employed to autonomously generate machine learning (ML) solutions. We examine two classification tasks: (i) a binary classification problem focused on predicting driver alertness states, and (ii) a multilabel classification problem based on the yeast dataset. Three state-of-the-art LLMs (i.e. OpenAI GPT, Anthropic Claude, and DeepSeek) are prompted to design training pipelines for four common classifiers: Random Forest, XGBoost, Multilayer Perceptron, and Long Short-Term Memory networks. The generated models are evaluated in terms of predictive performance (recall, precision, and F1-score) and explainability using SHAP (SHapley Additive exPlanations). Specifically, we measure Average SHAP Fidelity (Mean Squared Error between SHAP approximations and model outputs) and Average SHAP Sparsity (number of features deemed influential). The results reveal that LLMs are capable of producing effective and interpretable models, achieving high fidelity and consistent sparsity, highlighting their potential as automated tools for interpretable ML pipeline generation. The results show that LLMs can produce effective, interpretable pipelines with high fidelity and consistent sparsity, closely matching manually engineered baselines.




Agentic AI systems and Physical or Embodied AI systems have been two key research verticals at the forefront of Artificial Intelligence and Robotics, with Model Context Protocol (MCP) increasingly becoming a key component and enabler of agentic applications. However, the literature at the intersection of these verticals, i.e., Agentic Embodied AI, remains scarce. This paper introduces an MCP server for analyzing ROS and ROS 2 bags, allowing for analyzing, visualizing and processing robot data with natural language through LLMs and VLMs. We describe specific tooling built with robotics domain knowledge, with our initial release focused on mobile robotics and supporting natively the analysis of trajectories, laser scan data, transforms, or time series data. This is in addition to providing an interface to standard ROS 2 CLI tools ("ros2 bag list" or "ros2 bag info"), as well as the ability to filter bags with a subset of topics or trimmed in time. Coupled with the MCP server, we provide a lightweight UI that allows the benchmarking of the tooling with different LLMs, both proprietary (Anthropic, OpenAI) and open-source (through Groq). Our experimental results include the analysis of tool calling capabilities of eight different state-of-the-art LLM/VLM models, both proprietary and open-source, large and small. Our experiments indicate that there is a large divide in tool calling capabilities, with Kimi K2 and Claude Sonnet 4 demonstrating clearly superior performance. We also conclude that there are multiple factors affecting the success rates, from the tool description schema to the number of arguments, as well as the number of tools available to the models. The code is available with a permissive license at https://github.com/binabik-ai/mcp-rosbags.




This study examines the capacity of large language models (LLMs) to support phenomenological qualitative analysis of first-person experience in Borderline Personality Disorder (BPD), understood as a disorder of temporality and selfhood. Building on a prior human-led thematic analysis of 24 inpatients' life-story interviews, we compared three LLMs (OpenAI GPT-4o, Google Gemini 2.5 Pro, Anthropic Claude Opus 4) prompted to mimic the interpretative style of the original investigators. The models were evaluated with blinded and non-blinded expert judges in phenomenology and clinical psychology. Assessments included semantic congruence, Jaccard coefficients, and multidimensional validity ratings (credibility, coherence, substantiveness, and groundness in data). Results showed variable overlap with the human analysis, from 0 percent in GPT to 42 percent in Claude and 58 percent in Gemini, and a low Jaccard coefficient (0.21-0.28). However, the models recovered themes omitted by humans. Gemini's output most closely resembled the human analysis, with validity scores significantly higher than GPT and Claude (p < 0.0001), and was judged as human by blinded experts. All scores strongly correlated (R > 0.78) with the quantity of text and words per theme, highlighting both the variability and potential of AI-augmented thematic analysis to mitigate human interpretative bias.
AI Alignment, primarily in the form of Reinforcement Learning from Human Feedback (RLHF), has been a cornerstone of the post-training phase in developing Large Language Models (LLMs). It has also been a popular research topic across various disciplines beyond Computer Science, including Philosophy and Law, among others, highlighting the socio-technical challenges involved. Nonetheless, except for the computational techniques related to alignment, there has been limited focus on the broader picture: the scope of these processes, which primarily rely on the selected objectives (values), and the data collected and used to imprint such objectives into the models. This work aims to reveal how alignment is understood and applied in practice from a value-setting and data-centric perspective. For this purpose, we investigate and survey (`audit') publicly available documentation released by 6 LLM development initiatives by 5 leading organizations shaping this technology, focusing on proprietary (OpenAI's GPT, Anthropic's Claude, Google's Gemini) and open-weight (Meta's Llama, Google's Gemma, and Alibaba's Qwen) initiatives, all published in the last 3 years. The findings are documented in detail per initiative, while there is also an overall summary concerning different aspects, mainly from a value-setting and data-centric perspective. On the basis of our findings, we discuss a series of broader related concerns.