Agentic AI systems and Physical or Embodied AI systems have been two key research verticals at the forefront of Artificial Intelligence and Robotics, with Model Context Protocol (MCP) increasingly becoming a key component and enabler of agentic applications. However, the literature at the intersection of these verticals, i.e., Agentic Embodied AI, remains scarce. This paper introduces an MCP server for analyzing ROS and ROS 2 bags, allowing for analyzing, visualizing and processing robot data with natural language through LLMs and VLMs. We describe specific tooling built with robotics domain knowledge, with our initial release focused on mobile robotics and supporting natively the analysis of trajectories, laser scan data, transforms, or time series data. This is in addition to providing an interface to standard ROS 2 CLI tools ("ros2 bag list" or "ros2 bag info"), as well as the ability to filter bags with a subset of topics or trimmed in time. Coupled with the MCP server, we provide a lightweight UI that allows the benchmarking of the tooling with different LLMs, both proprietary (Anthropic, OpenAI) and open-source (through Groq). Our experimental results include the analysis of tool calling capabilities of eight different state-of-the-art LLM/VLM models, both proprietary and open-source, large and small. Our experiments indicate that there is a large divide in tool calling capabilities, with Kimi K2 and Claude Sonnet 4 demonstrating clearly superior performance. We also conclude that there are multiple factors affecting the success rates, from the tool description schema to the number of arguments, as well as the number of tools available to the models. The code is available with a permissive license at https://github.com/binabik-ai/mcp-rosbags.
Big Language Models (LLMs) are changing the way businesses use software, the way people live their lives and the way industries work. Companies like Google, High-Flyer, Anthropic, OpenAI and Meta are making better LLMs. So, it's crucial to look at how each model is different in terms of performance, moral behaviour and usability, as these differences are based on the different ideas that built them. This study compares five top LLMs: Google's Gemini, High-Flyer's DeepSeek, Anthropic's Claude, OpenAI's GPT models and Meta's LLaMA. It performs this by analysing three important factors: Performance and Accuracy, Ethics and Bias Mitigation and Usability and Integration. It was found that Claude has good moral reasoning, Gemini is better at multimodal capabilities and has strong ethical frameworks. DeepSeek is great at reasoning based on facts, LLaMA is good for open applications and ChatGPT delivers balanced performance with a focus on usage. It was concluded that these models are different in terms of how well they work, how easy they are to use and how they treat people ethically, making it a point that each model should be utilised by the user in a way that makes the most of its strengths.
As Large Language Models (LLMs) continue to evolve, practitioners face increasing options for enhancing inference-time performance without model retraining, including budget tuning and multi-step techniques like self-reflection. While these methods improve output quality, they create complex trade-offs among accuracy, cost, and latency that remain poorly understood across different domains. This paper systematically compares self-reflection and budget tuning across mathematical reasoning and translation tasks. We evaluate prominent LLMs, including Anthropic Claude, Amazon Nova, and Mistral families, along with other models under varying reflection depths and compute budgets to derive Pareto optimal performance frontiers. Our analysis reveals substantial domain dependent variation in self-reflection effectiveness, with performance gains up to 220\% in mathematical reasoning. We further investigate how reflection round depth and feedback mechanism quality influence performance across model families. To validate our findings in a real-world setting, we deploy a self-reflection enhanced marketing content localisation system at Lounge by Zalando, where it shows market-dependent effectiveness, reinforcing the importance of domain specific evaluation when deploying these techniques. Our results provide actionable guidance for selecting optimal inference strategies given specific domains and resource constraints. We open source our self-reflection implementation for reproducibility at https://github.com/aws-samples/sample-genai-reflection-for-bedrock.




This study explores the explainability capabilities of large language models (LLMs), when employed to autonomously generate machine learning (ML) solutions. We examine two classification tasks: (i) a binary classification problem focused on predicting driver alertness states, and (ii) a multilabel classification problem based on the yeast dataset. Three state-of-the-art LLMs (i.e. OpenAI GPT, Anthropic Claude, and DeepSeek) are prompted to design training pipelines for four common classifiers: Random Forest, XGBoost, Multilayer Perceptron, and Long Short-Term Memory networks. The generated models are evaluated in terms of predictive performance (recall, precision, and F1-score) and explainability using SHAP (SHapley Additive exPlanations). Specifically, we measure Average SHAP Fidelity (Mean Squared Error between SHAP approximations and model outputs) and Average SHAP Sparsity (number of features deemed influential). The results reveal that LLMs are capable of producing effective and interpretable models, achieving high fidelity and consistent sparsity, highlighting their potential as automated tools for interpretable ML pipeline generation. The results show that LLMs can produce effective, interpretable pipelines with high fidelity and consistent sparsity, closely matching manually engineered baselines.
This study examines the capacity of large language models (LLMs) to support phenomenological qualitative analysis of first-person experience in Borderline Personality Disorder (BPD), understood as a disorder of temporality and selfhood. Building on a prior human-led thematic analysis of 24 inpatients' life-story interviews, we compared three LLMs (OpenAI GPT-4o, Google Gemini 2.5 Pro, Anthropic Claude Opus 4) prompted to mimic the interpretative style of the original investigators. The models were evaluated with blinded and non-blinded expert judges in phenomenology and clinical psychology. Assessments included semantic congruence, Jaccard coefficients, and multidimensional validity ratings (credibility, coherence, substantiveness, and groundness in data). Results showed variable overlap with the human analysis, from 0 percent in GPT to 42 percent in Claude and 58 percent in Gemini, and a low Jaccard coefficient (0.21-0.28). However, the models recovered themes omitted by humans. Gemini's output most closely resembled the human analysis, with validity scores significantly higher than GPT and Claude (p < 0.0001), and was judged as human by blinded experts. All scores strongly correlated (R > 0.78) with the quantity of text and words per theme, highlighting both the variability and potential of AI-augmented thematic analysis to mitigate human interpretative bias.
AI Alignment, primarily in the form of Reinforcement Learning from Human Feedback (RLHF), has been a cornerstone of the post-training phase in developing Large Language Models (LLMs). It has also been a popular research topic across various disciplines beyond Computer Science, including Philosophy and Law, among others, highlighting the socio-technical challenges involved. Nonetheless, except for the computational techniques related to alignment, there has been limited focus on the broader picture: the scope of these processes, which primarily rely on the selected objectives (values), and the data collected and used to imprint such objectives into the models. This work aims to reveal how alignment is understood and applied in practice from a value-setting and data-centric perspective. For this purpose, we investigate and survey (`audit') publicly available documentation released by 6 LLM development initiatives by 5 leading organizations shaping this technology, focusing on proprietary (OpenAI's GPT, Anthropic's Claude, Google's Gemini) and open-weight (Meta's Llama, Google's Gemma, and Alibaba's Qwen) initiatives, all published in the last 3 years. The findings are documented in detail per initiative, while there is also an overall summary concerning different aspects, mainly from a value-setting and data-centric perspective. On the basis of our findings, we discuss a series of broader related concerns.
Are Large Language Models (LLMs) a new form of strategic intelligence, able to reason about goals in competitive settings? We present compelling supporting evidence. The Iterated Prisoner's Dilemma (IPD) has long served as a model for studying decision-making. We conduct the first ever series of evolutionary IPD tournaments, pitting canonical strategies (e.g., Tit-for-Tat, Grim Trigger) against agents from the leading frontier AI companies OpenAI, Google, and Anthropic. By varying the termination probability in each tournament (the "shadow of the future"), we introduce complexity and chance, confounding memorisation. Our results show that LLMs are highly competitive, consistently surviving and sometimes even proliferating in these complex ecosystems. Furthermore, they exhibit distinctive and persistent "strategic fingerprints": Google's Gemini models proved strategically ruthless, exploiting cooperative opponents and retaliating against defectors, while OpenAI's models remained highly cooperative, a trait that proved catastrophic in hostile environments. Anthropic's Claude emerged as the most forgiving reciprocator, showing remarkable willingness to restore cooperation even after being exploited or successfully defecting. Analysis of nearly 32,000 prose rationales provided by the models reveals that they actively reason about both the time horizon and their opponent's likely strategy, and we demonstrate that this reasoning is instrumental to their decisions. This work connects classic game theory with machine psychology, offering a rich and granular view of algorithmic decision-making under uncertainty.
Large Language Models (LLMs) can exhibit latent biases towards specific nationalities even when explicit demographic markers are not present. In this work, we introduce a novel name-based benchmarking approach derived from the Bias Benchmark for QA (BBQ) dataset to investigate the impact of substituting explicit nationality labels with culturally indicative names, a scenario more reflective of real-world LLM applications. Our novel approach examines how this substitution affects both bias magnitude and accuracy across a spectrum of LLMs from industry leaders such as OpenAI, Google, and Anthropic. Our experiments show that small models are less accurate and exhibit more bias compared to their larger counterparts. For instance, on our name-based dataset and in the ambiguous context (where the correct choice is not revealed), Claude Haiku exhibited the worst stereotypical bias scores of 9%, compared to only 3.5% for its larger counterpart, Claude Sonnet, where the latter also outperformed it by 117.7% in accuracy. Additionally, we find that small models retain a larger portion of existing errors in these ambiguous contexts. For example, after substituting names for explicit nationality references, GPT-4o retains 68% of the error rate versus 76% for GPT-4o-mini, with similar findings for other model providers, in the ambiguous context. Our research highlights the stubborn resilience of biases in LLMs, underscoring their profound implications for the development and deployment of AI systems in diverse, global contexts.
As online platforms grow, comment sections increasingly host harassment that undermines user experience and well-being. This study benchmarks three leading large language models, OpenAI GPT-4.1, Google Gemini 1.5 Pro, and Anthropic Claude 3 Opus, on a corpus of 5,080 YouTube comments sampled from high-abuse threads in gaming, lifestyle, food vlog, and music channels. The dataset comprises 1,334 harmful and 3,746 non-harmful messages in English, Arabic, and Indonesian, annotated independently by two reviewers with substantial agreement (Cohen's kappa = 0.83). Using a unified prompt and deterministic settings, GPT-4.1 achieved the best overall balance with an F1 score of 0.863, precision of 0.887, and recall of 0.841. Gemini flagged the highest share of harmful posts (recall = 0.875) but its precision fell to 0.767 due to frequent false positives. Claude delivered the highest precision at 0.920 and the lowest false-positive rate of 0.022, yet its recall dropped to 0.720. Qualitative analysis showed that all three models struggle with sarcasm, coded insults, and mixed-language slang. These results underscore the need for moderation pipelines that combine complementary models, incorporate conversational context, and fine-tune for under-represented languages and implicit abuse. A de-identified version of the dataset and full prompts is publicly released to promote reproducibility and further progress in automated content moderation.
Large Language Models (LLMs) such as GPT-4 (and its recent iterations like GPT-4o and the GPT-4.1 series), Google's Gemini, Anthropic's Claude 3 models, and xAI's Grok have caused a revolution in natural language processing, but their capabilities also introduce new security vulnerabilities. In this survey, we provide a comprehensive overview of the emerging security concerns around LLMs, categorizing threats into prompt injection and jailbreaking, adversarial attacks (including input perturbations and data poisoning), misuse by malicious actors (e.g., for disinformation, phishing, and malware generation), and worrisome risks inherent in autonomous LLM agents. A significant focus has been recently placed on the latter, exploring goal misalignment, emergent deception, self-preservation instincts, and the potential for LLMs to develop and pursue covert, misaligned objectives (scheming), which may even persist through safety training. We summarize recent academic and industrial studies (2022-2025) that exemplify each threat, analyze proposed defenses and their limitations, and identify open challenges in securing LLM-based applications. We conclude by emphasizing the importance of advancing robust, multi-layered security strategies to ensure LLMs are safe and beneficial.