Abstract:We present the first evaluation harness that enables any out-of-the-box, local, Large Language Models (LLMs) to play full-press Diplomacy without fine-tuning or specialized training. Previous work required frontier LLMs, or fine-tuning, due to the high complexity and information density of Diplomacy's game state. Combined with the high variance of matches, these factors made Diplomacy prohibitive for study. In this work, we used data-driven iteration to optimize a textual game state representation such that a 24B model can reliably complete matches without any fine tuning. We develop tooling to facilitate hypothesis testing and statistical analysis, and we present case studies on persuasion, aggressive playstyles, and performance across a range of models. We conduct a variety of experiments across many popular LLMs, finding the larger models perform the best, but the smaller models still play adequately. We also introduce Critical State Analysis: an experimental protocol for rapidly iterating and analyzing key moments in a game at depth. Our harness democratizes the evaluation of strategic reasoning in LLMs by eliminating the need for fine-tuning, and it provides insights into how these capabilities emerge naturally from widely used LLMs. Our code is available in the supplement and will be open sourced.
Abstract:Are Large Language Models (LLMs) a new form of strategic intelligence, able to reason about goals in competitive settings? We present compelling supporting evidence. The Iterated Prisoner's Dilemma (IPD) has long served as a model for studying decision-making. We conduct the first ever series of evolutionary IPD tournaments, pitting canonical strategies (e.g., Tit-for-Tat, Grim Trigger) against agents from the leading frontier AI companies OpenAI, Google, and Anthropic. By varying the termination probability in each tournament (the "shadow of the future"), we introduce complexity and chance, confounding memorisation. Our results show that LLMs are highly competitive, consistently surviving and sometimes even proliferating in these complex ecosystems. Furthermore, they exhibit distinctive and persistent "strategic fingerprints": Google's Gemini models proved strategically ruthless, exploiting cooperative opponents and retaliating against defectors, while OpenAI's models remained highly cooperative, a trait that proved catastrophic in hostile environments. Anthropic's Claude emerged as the most forgiving reciprocator, showing remarkable willingness to restore cooperation even after being exploited or successfully defecting. Analysis of nearly 32,000 prose rationales provided by the models reveals that they actively reason about both the time horizon and their opponent's likely strategy, and we demonstrate that this reasoning is instrumental to their decisions. This work connects classic game theory with machine psychology, offering a rich and granular view of algorithmic decision-making under uncertainty.