Abstract:While Large Language Model (LLM)-based agents have shown remarkable potential for solving complex tasks, existing systems remain heavily reliant on large-scale models, leaving the capabilities of edge-scale models largely underexplored. In this paper, we present the first systematic study on training agentic models at the 4B-parameter scale. We identify three primary bottlenecks hindering the performance of edge-scale models: catastrophic forgetting during Supervised Fine-Tuning (SFT), sensitivity to reward signal noise during Reinforcement Learning (RL), and reasoning degradation caused by redundant information in long-context scenarios. To address the issues, we propose AgentCPM-Explore, a compact 4B agent model with high knowledge density and strong exploration capability. We introduce a holistic training framework featuring parameter-space model fusion, reward signal denoising, and contextual information refinement. Through deep exploration, AgentCPM-Explore achieves state-of-the-art (SOTA) performance among 4B-class models, matches or surpasses 8B-class SOTA models on four benchmarks, and even outperforms larger-scale models such as Claude-4.5-Sonnet or DeepSeek-v3.2 in five benchmarks. Notably, AgentCPM-Explore achieves 97.09% accuracy on GAIA text-based tasks under pass@64. These results provide compelling evidence that the bottleneck for edge-scale models is not their inherent capability ceiling, but rather their inference stability. Based on our well-established training framework, AgentCPM-Explore effectively unlocks the significant, yet previously underestimated, potential of edge-scale models.




Abstract:In this technical report, we introduce OpenR, an open-source framework designed to integrate key components for enhancing the reasoning capabilities of large language models (LLMs). OpenR unifies data acquisition, reinforcement learning training (both online and offline), and non-autoregressive decoding into a cohesive software platform. Our goal is to establish an open-source platform and community to accelerate the development of LLM reasoning. Inspired by the success of OpenAI's o1 model, which demonstrated improved reasoning abilities through step-by-step reasoning and reinforcement learning, OpenR integrates test-time compute, reinforcement learning, and process supervision to improve reasoning in LLMs. Our work is the first to provide an open-source framework that explores the core techniques of OpenAI's o1 model with reinforcement learning, achieving advanced reasoning capabilities beyond traditional autoregressive methods. We demonstrate the efficacy of OpenR by evaluating it on the MATH dataset, utilising publicly available data and search methods. Our initial experiments confirm substantial gains, with relative improvements in reasoning and performance driven by test-time computation and reinforcement learning through process reward models. The OpenR framework, including code, models, and datasets, is accessible at https://openreasoner.github.io.
Abstract:Many real-world problems can be formulated as a constrained Traveling Salesman Problem (TSP). However, the constraints are always complex and numerous, making the TSPs challenging to solve. When the number of complicated constraints grows, it is time-consuming for traditional heuristic algorithms to avoid illegitimate outcomes. Learning-based methods provide an alternative to solve TSPs in a soft manner, which also supports GPU acceleration to generate solutions quickly. Nevertheless, the soft manner inevitably results in difficulty solving hard-constrained problems with learning algorithms, and the conflicts between legality and optimality may substantially affect the optimality of the solution. To overcome this problem and to have an effective solution against hard constraints, we proposed a novel learning-based method that uses looking-ahead information as the feature to improve the legality of TSP with Time Windows (TSPTW) solutions. Besides, we constructed TSPTW datasets with hard constraints in order to accurately evaluate and benchmark the statistical performance of various approaches, which can serve the community for future research. With comprehensive experiments on diverse datasets, MUSLA outperforms existing baselines and shows generalizability potential.