Abstract:The evaluation of intelligibility for TTS has reached a bottleneck, as existing assessments heavily rely on word-by-word accuracy metrics such as WER, which fail to capture the complexity of real-world speech or reflect human comprehension needs. To address this, we propose Spoken-Passage Multiple-Choice Question Answering, a novel subjective approach evaluating the accuracy of key information in synthesized speech, and release SP-MCQA-Eval, an 8.76-hour news-style benchmark dataset for SP-MCQA evaluation. Our experiments reveal that low WER does not necessarily guarantee high key-information accuracy, exposing a gap between traditional metrics and practical intelligibility. SP-MCQA shows that even state-of-the-art (SOTA) models still lack robust text normalization and phonetic accuracy. This work underscores the urgent need for high-level, more life-like evaluation criteria now that many systems already excel at WER yet may fall short on real-world intelligibility.
Abstract:Thermal imaging can greatly enhance the application of intelligent unmanned aerial vehicles (UAV) in challenging environments. However, the inherent low resolution of thermal sensors leads to insufficient details and blurred boundaries. Super-resolution (SR) offers a promising solution to address this issue, while most existing SR methods are designed for fixed-scale SR. They are computationally expensive and inflexible in practical applications. To address above issues, this work proposes a novel any-scale thermal SR method (AnyTSR) for UAV within a single model. Specifically, a new image encoder is proposed to explicitly assign specific feature code to enable more accurate and flexible representation. Additionally, by effectively embedding coordinate offset information into the local feature ensemble, an innovative any-scale upsampler is proposed to better understand spatial relationships and reduce artifacts. Moreover, a novel dataset (UAV-TSR), covering both land and water scenes, is constructed for thermal SR tasks. Experimental results demonstrate that the proposed method consistently outperforms state-of-the-art methods across all scaling factors as well as generates more accurate and detailed high-resolution images. The code is located at https://github.com/vision4robotics/AnyTSR.


Abstract:The Lottery Ticket Hypothesis (LTH) states that a dense neural network model contains a highly sparse subnetwork (i.e., winning tickets) that can achieve even better performance than the original model when trained in isolation. While LTH has been proved both empirically and theoretically in many works, there still are some open issues, such as efficiency and scalability, to be addressed. Also, the lack of open-source frameworks and consensual experimental setting poses a challenge to future research on LTH. We, for the first time, examine previous research and studies on LTH from different perspectives. We also discuss issues in existing works and list potential directions for further exploration. This survey aims to provide an in-depth look at the state of LTH and develop a duly maintained platform to conduct experiments and compare with the most updated baselines.