Abstract:Pose-guided video generation refers to controlling the motion of subjects in generated video through a sequence of poses. It enables precise control over subject motion and has important applications in animation. However, current pose-guided video generation methods are limited to accepting only human poses as input, thus generalizing poorly to pose of other subjects. To address this issue, we propose PoseAnything, the first universal pose-guided video generation framework capable of handling both human and non-human characters, supporting arbitrary skeletal inputs. To enhance consistency preservation during motion, we introduce Part-aware Temporal Coherence Module, which divides the subject into different parts, establishes part correspondences, and computes cross-attention between corresponding parts across frames to achieve fine-grained part-level consistency. Additionally, we propose Subject and Camera Motion Decoupled CFG, a novel guidance strategy that, for the first time, enables independent camera movement control in pose-guided video generation, by separately injecting subject and camera motion control information into the positive and negative anchors of CFG. Furthermore, we present XPose, a high-quality public dataset containing 50,000 non-human pose-video pairs, along with an automated pipeline for annotation and filtering. Extensive experiments demonstrate that Pose-Anything significantly outperforms state-of-the-art methods in both effectiveness and generalization.
Abstract:Continual Learning (CL) epitomizes an advanced training paradigm wherein prior data samples remain inaccessible during the acquisition of new tasks. Numerous investigations have delved into leveraging a pre-trained Vision Transformer (ViT) to enhance model efficacy in continual learning. Nonetheless, these approaches typically utilize a singular, static backbone, which inadequately adapts to novel tasks, particularly when engaging with diverse data domains, due to a substantial number of inactive parameters. This paper addresses this limitation by introducing an innovative Self-Controlled Dynamic Expansion Model (SCDEM), which orchestrates multiple distinct trainable pre-trained ViT backbones to furnish diverse and semantically enriched representations. Specifically, by employing the multi-backbone architecture as a shared module, the proposed SCDEM dynamically generates a new expert with minimal parameters to accommodate a new task. A novel Collaborative Optimization Mechanism (COM) is introduced to synergistically optimize multiple backbones by harnessing prediction signals from historical experts, thereby facilitating new task learning without erasing previously acquired knowledge. Additionally, a novel Feature Distribution Consistency (FDC) approach is proposed to align semantic similarity between previously and currently learned representations through an optimal transport distance-based mechanism, effectively mitigating negative knowledge transfer effects. Furthermore, to alleviate over-regularization challenges, this paper presents a novel Dynamic Layer-Wise Feature Attention Mechanism (DLWFAM) to autonomously determine the penalization intensity on each trainable representation layer. An extensive series of experiments have been conducted to evaluate the proposed methodology's efficacy, with empirical results corroborating that the approach attains state-of-the-art performance.