Abstract:Active learning (AL) reduces human annotation costs for machine learning systems by strategically selecting the most informative unlabeled data for annotation, but performing it individually may still be insufficient due to restricted data diversity and annotation budget. Federated Active Learning (FAL) addresses this by facilitating collaborative data selection and model training, while preserving the confidentiality of raw data samples. Yet, existing FAL methods fail to account for the heterogeneity of data distribution across clients and the associated fluctuations in global and local model parameters, adversely affecting model accuracy. To overcome these challenges, we propose CHASe (Client Heterogeneity-Aware Data Selection), specifically designed for FAL. CHASe focuses on identifying those unlabeled samples with high epistemic variations (EVs), which notably oscillate around the decision boundaries during training. To achieve both effectiveness and efficiency, \model{} encompasses techniques for 1) tracking EVs by analyzing inference inconsistencies across training epochs, 2) calibrating decision boundaries of inaccurate models with a new alignment loss, and 3) enhancing data selection efficiency via a data freeze and awaken mechanism with subset sampling. Experiments show that CHASe surpasses various established baselines in terms of effectiveness and efficiency, validated across diverse datasets, model complexities, and heterogeneous federation settings.
Abstract:Over the recent years, Shapley value (SV), a solution concept from cooperative game theory, has found numerous applications in data analytics (DA). This paper provides the first comprehensive study of SV used throughout the DA workflow, which involves three main steps: data fabric, data exploration, and result reporting. We summarize existing versatile forms of SV used in these steps by a unified definition and clarify the essential functionalities that SV can provide for data scientists. We categorize the arts in this field based on the technical challenges they tackled, which include computation efficiency, approximation error, privacy preservation, and appropriate interpretations. We discuss these challenges and analyze the corresponding solutions. We also implement SVBench, the first open-sourced benchmark for developing SV applications, and conduct experiments on six DA tasks to validate our analysis and discussions. Based on the qualitative and quantitative results, we identify the limitations of current efforts for applying SV to DA and highlight the directions of future research and engineering.
Abstract:Data processing and analytics are fundamental and pervasive. Algorithms play a vital role in data processing and analytics where many algorithm designs have incorporated heuristics and general rules from human knowledge and experience to improve their effectiveness. Recently, reinforcement learning, deep reinforcement learning (DRL) in particular, is increasingly explored and exploited in many areas because it can learn better strategies in complicated environments it is interacting with than statically designed algorithms. Motivated by this trend, we provide a comprehensive review of recent works focusing on utilizing deep reinforcement learning to improve data processing and analytics. First, we present an introduction to key concepts, theories, and methods in deep reinforcement learning. Next, we discuss deep reinforcement learning deployment on database systems, facilitating data processing and analytics in various aspects, including data organization, scheduling, tuning, and indexing. Then, we survey the application of deep reinforcement learning in data processing and analytics, ranging from data preparation, natural language interface to healthcare, fintech, etc. Finally, we discuss important open challenges and future research directions of using deep reinforcement learning in data processing and analytics.