Abstract:Quotations in literary works, especially novels, are important to create characters, reflect character relationships, and drive plot development. Current research on quotation extraction in novels primarily focuses on quotation attribution, i.e., identifying the speaker of the quotation. However, the addressee of the quotation is also important to construct the relationship between the speaker and the addressee. To tackle the problem of dataset scarcity, we annotate the first Chinese quotation corpus with elements including speaker, addressee, speaking mode and linguistic cue. We propose prompt learning-based methods for speaker and addressee identification based on fine-tuned pre-trained models. Experiments on both Chinese and English datasets show the effectiveness of the proposed methods, which outperform methods based on zero-shot and few-shot large language models.
Abstract:In the field of medical image compression, Implicit Neural Representation (INR) networks have shown remarkable versatility due to their flexible compression ratios, yet they are constrained by a one-to-one fitting approach that results in lengthy encoding times. Our novel method, ``\textbf{UniCompress}'', innovatively extends the compression capabilities of INR by being the first to compress multiple medical data blocks using a single INR network. By employing wavelet transforms and quantization, we introduce a codebook containing frequency domain information as a prior input to the INR network. This enhances the representational power of INR and provides distinctive conditioning for different image blocks. Furthermore, our research introduces a new technique for the knowledge distillation of implicit representations, simplifying complex model knowledge into more manageable formats to improve compression ratios. Extensive testing on CT and electron microscopy (EM) datasets has demonstrated that UniCompress outperforms traditional INR methods and commercial compression solutions like HEVC, especially in complex and high compression scenarios. Notably, compared to existing INR techniques, UniCompress achieves a 4$\sim$5 times increase in compression speed, marking a significant advancement in the field of medical image compression. Codes will be publicly available.
Abstract:Background: Liver tumors are abnormal growths in the liver that can be either benign or malignant, with liver cancer being a significant health concern worldwide. However, there is no dataset for plain scan segmentation of liver tumors, nor any related algorithms. To fill this gap, we propose Plain Scan Liver Tumors(PSLT) and YNetr. Methods: A collection of 40 liver tumor plain scan segmentation datasets was assembled and annotated. Concurrently, we utilized Dice coefficient as the metric for assessing the segmentation outcomes produced by YNetr, having advantage of capturing different frequency information. Results: The YNetr model achieved a Dice coefficient of 62.63% on the PSLT dataset, surpassing the other publicly available model by an accuracy margin of 1.22%. Comparative evaluations were conducted against a range of models including UNet 3+, XNet, UNetr, Swin UNetr, Trans-BTS, COTr, nnUNetv2 (2D), nnUNetv2 (3D fullres), MedNext (2D) and MedNext(3D fullres). Conclusions: We not only proposed a dataset named PSLT(Plain Scan Liver Tumors), but also explored a structure called YNetr that utilizes wavelet transform to extract different frequency information, which having the SOTA in PSLT by experiments.
Abstract:In the ever-evolving landscape of artificial intelligence (AI) and large language models (LLMs), handling and leveraging data effectively has become a critical challenge. Most state-of-the-art machine learning algorithms are data-centric. However, as the lifeblood of model performance, necessary data cannot always be centralized due to various factors such as privacy, regulation, geopolitics, copyright issues, and the sheer effort required to move vast datasets. In this paper, we explore how federated learning enabled by NVIDIA FLARE can address these challenges with easy and scalable integration capabilities, enabling parameter-efficient and full supervised fine-tuning of LLMs for natural language processing and biopharmaceutical applications to enhance their accuracy and robustness.
Abstract:State of health (SOH) is a crucial indicator for assessing the degradation level of batteries that cannot be measured directly but requires estimation. Accurate SOH estimation enhances detection, control, and feedback for Li-ion batteries, allowing for safe and efficient energy management and guiding the development of new-generation batteries. Despite the significant progress in data-driven SOH estimation, the time and resource-consuming degradation experiments for generating lifelong training data pose a challenge in establishing one large model capable of handling diverse types of Li-ion batteries, e.g., cross-chemistry, cross-manufacturer, and cross-capacity. Hence, this paper utilizes the strong generalization capability of large language model (LLM) to proposes a novel framework for adaptable SOH estimation across diverse batteries. To match the real scenario where unlabeled data sequentially arrives in use with distribution shifts, the proposed model is modified by a test-time training technique to ensure estimation accuracy even at the battery's end of life. The validation results demonstrate that the proposed framework achieves state-of-the-art accuracy on four widely recognized datasets collected from 62 batteries. Furthermore, we analyze the theoretical challenges of cross-battery estimation and provide a quantitative explanation of the effectiveness of our method.
Abstract:The compact cameras recording high-speed scenes with high resolution are highly demanded, but the required high bandwidth often leads to bulky, heavy systems, which limits their applications on low-capacity platforms. Adopting a coded exposure setup to encode a frame sequence into a blurry snapshot and retrieve the latent sharp video afterward can serve as a lightweight solution. However, restoring motion from blur is quite challenging due to the high ill-posedness of motion blur decomposition, intrinsic ambiguity in motion direction, and diverse motions in natural videos. In this work, by leveraging classical coded exposure imaging technique and emerging implicit neural representation for videos, we tactfully embed the motion direction cues into the blurry image during the imaging process and develop a novel self-recursive neural network to sequentially retrieve the latent video sequence from the blurry image utilizing the embedded motion direction cues. To validate the effectiveness and efficiency of the proposed framework, we conduct extensive experiments on benchmark datasets and real-captured blurry images. The results demonstrate that our proposed framework significantly outperforms existing methods in quality and flexibility. The code for our work is available at https://github.com/zhihongz/BDINR
Abstract:In recent years, kernel methods are widespread in tasks of similarity measuring. Specifically, graph kernels are widely used in fields of bioinformatics, chemistry and financial data analysis. However, existing methods, especially entropy based graph kernels are subject to large computational complexity and the negligence of node-level information. In this paper, we propose a novel labeled subgraph entropy graph kernel, which performs well in structural similarity assessment. We design a dynamic programming subgraph enumeration algorithm, which effectively reduces the time complexity. Specially, we propose labeled subgraph, which enriches substructure topology with semantic information. Analogizing the cluster expansion process of gas cluster in statistical mechanics, we re-derive the partition function and calculate the global graph entropy to characterize the network. In order to test our method, we apply several real-world datasets and assess the effects in different tasks. To capture more experiment details, we quantitatively and qualitatively analyze the contribution of different topology structures. Experimental results successfully demonstrate the effectiveness of our method which outperforms several state-of-the-art methods.
Abstract:Imaging and perception in photon-limited scenarios is necessary for various applications, e.g., night surveillance or photography, high-speed photography, and autonomous driving. In these cases, cameras suffer from low signal-to-noise ratio, which degrades the image quality severely and poses challenges for downstream high-level vision tasks like object detection and recognition. Data-driven methods have achieved enormous success in both image restoration and high-level vision tasks. However, the lack of high-quality benchmark dataset with task-specific accurate annotations for photon-limited images/videos delays the research progress heavily. In this paper, we contribute the first multi-illuminance, multi-camera, and low-light dataset, named DarkVision, serving for both image enhancement and object detection. We provide bright and dark pairs with pixel-wise registration, in which the bright counterpart provides reliable reference for restoration and annotation. The dataset consists of bright-dark pairs of 900 static scenes with objects from 15 categories, and 32 dynamic scenes with 4-category objects. For each scene, images/videos were captured at 5 illuminance levels using three cameras of different grades, and average photons can be reliably estimated from the calibration data for quantitative studies. The static-scene images and dynamic videos respectively contain around 7,344 and 320,667 instances in total. With DarkVision, we established baselines for image/video enhancement and object detection by representative algorithms. To demonstrate an exemplary application of DarkVision, we propose two simple yet effective approaches for improving performance in video enhancement and object detection respectively. We believe DarkVision would advance the state-of-the-arts in both imaging and related computer vision tasks in low-light environment.
Abstract:Graph matching can be formalized as a combinatorial optimization problem, where there are corresponding relationships between pairs of nodes that can be represented as edges. This problem becomes challenging when there are potential ambiguities present due to nodes and edges with high similarity, and there is a need to find accurate results for similar content matching. In this paper, we introduce a novel end-to-end neural network that can map the linear assignment problem into a high-dimensional space augmented with node-level relative position information, which is crucial for improving the method's performance for similar content matching. Our model constructs the anchor set for the relative position of nodes and then aggregates the feature information of the target node and each anchor node based on a measure of relative position. It then learns the node feature representation by integrating the topological structure and the relative position information, thus realizing the linear assignment between the two graphs. To verify the effectiveness and generalizability of our method, we conduct graph matching experiments, including cross-category matching, on different real-world datasets. Comparisons with different baselines demonstrate the superiority of our method. Our source code is available under https://github.com/anonymous.
Abstract:Federated learning (FL) enables building robust and generalizable AI models by leveraging diverse datasets from multiple collaborators without centralizing the data. We created NVIDIA FLARE as an open-source software development kit (SDK) to make it easier for data scientists to use FL in their research and real-world applications. The SDK includes solutions for state-of-the-art FL algorithms and federated machine learning approaches, which facilitate building workflows for distributed learning across enterprises and enable platform developers to create a secure, privacy-preserving offering for multiparty collaboration utilizing homomorphic encryption or differential privacy. The SDK is a lightweight, flexible, and scalable Python package, and allows researchers to bring their data science workflows implemented in any training libraries (PyTorch, TensorFlow, XGBoost, or even NumPy) and apply them in real-world FL settings. This paper introduces the key design principles of FLARE and illustrates some use cases (e.g., COVID analysis) with customizable FL workflows that implement different privacy-preserving algorithms. Code is available at https://github.com/NVIDIA/NVFlare.