Beihang University
Abstract:Marine fog poses a significant hazard to global shipping, necessitating effective detection and forecasting to reduce economic losses. In recent years, several machine learning (ML) methods have demonstrated superior detection accuracy compared to traditional meteorological methods. However, most of these works are developed on proprietary datasets, and the few publicly accessible datasets are often limited to simplistic toy scenarios for research purposes. To advance the field, we have collected nearly a decade's worth of multi-modal data related to continuous marine fog stages from four series of geostationary meteorological satellites, along with meteorological observations and numerical analysis, covering 15 marine regions globally where maritime fog frequently occurs. Through pixel-level manual annotation by meteorological experts, we present the most comprehensive marine fog detection and forecasting dataset to date, named M4Fog, to bridge ocean and atmosphere. The dataset comprises 68,000 "super data cubes" along four dimensions: elements, latitude, longitude and time, with a temporal resolution of half an hour and a spatial resolution of 1 kilometer. Considering practical applications, we have defined and explored three meaningful tracks with multi-metric evaluation systems: static or dynamic marine fog detection, and spatio-temporal forecasting for cloud images. Extensive benchmarking and experiments demonstrate the rationality and effectiveness of the construction concept for proposed M4Fog. The data and codes are available to whole researchers through cloud platforms to develop ML-driven marine fog solutions and mitigate adverse impacts on human activities.
Abstract:Semantic change detection is an important task in geoscience and earth observation. By producing a semantic change map for each temporal phase, both the land use land cover categories and change information can be interpreted. Recently some multi-task learning based semantic change detection methods have been proposed to decompose the task into semantic segmentation and binary change detection subtasks. However, previous works comprise triple branches in an entangled manner, which may not be optimal and hard to adopt foundation models. Besides, lacking explicit refinement of bitemporal features during fusion may cause low accuracy. In this letter, we propose a novel late-stage bitemporal feature fusion network to address the issue. Specifically, we propose local global attentional aggregation module to strengthen feature fusion, and propose local global context enhancement module to highlight pivotal semantics. Comprehensive experiments are conducted on two public datasets, including SECOND and Landsat-SCD. Quantitative and qualitative results show that our proposed model achieves new state-of-the-art performance on both datasets.
Abstract:Domain generalization aims to develop a model that can perform well on unseen target domains by learning from multiple source domains. However, recent-proposed domain generalization models usually rely on domain labels, which may not be available in many real-world scenarios. To address this challenge, we propose a Discriminant Risk Minimization (DRM) theory and the corresponding algorithm to capture the invariant features without domain labels. In DRM theory, we prove that reducing the discrepancy of prediction distribution between overall source domain and any subset of it can contribute to obtaining invariant features. To apply the DRM theory, we develop an algorithm which is composed of Bayesian inference and a new penalty termed as Categorical Discriminant Risk (CDR). In Bayesian inference, we transform the output of the model into a probability distribution to align with our theoretical assumptions. We adopt sliding update approach to approximate the overall prediction distribution of the model, which enables us to obtain CDR penalty. We also indicate the effectiveness of these components in finding invariant features. We evaluate our algorithm against various domain generalization methods on multiple real-world datasets, providing empirical support for our theory.
Abstract:Domain generalization (DG) aims to train a model from limited source domains, allowing it to generalize to unknown target domains. Typically, DG models only employ large-scale pre-trained models during the initialization of fine-tuning. However, large-scale pre-trained models already possess the ability to resist domain shift. If we reference pre-trained models continuously during fine-tuning to maintain this ability, it could further enhance the generalization ability of the DG model. For this purpose, we introduce a new method called Fine-Tune with Large-scale pre-trained Priors (FT-LP), which incorporates the pre-trained model as a prior into the DG fine-tuning process, ensuring that the model refers to its pre-trained model at each optimization step. FT-LP comprises a theoretical framework and a simple implementation strategy. In theory, we verify the rationality of FT-LP by introducing a generalization error bound with the pre-trained priors for DG. In implementation, we utilize an encoder to simulate the model distribution, enabling the use of FT-LP when only pre-trained weights are available. In summary, we offer a new fine-tuning method for DG algorithms to utilize pre-trained models throughout the fine-tuning process. Through experiments on various datasets and DG models, our proposed method exhibits significant improvements, indicating its effectiveness.
Abstract:Recently, the Mamba architecture based on state space models has demonstrated remarkable performance in a series of natural language processing tasks and has been rapidly applied to remote sensing change detection (CD) tasks. However, most methods enhance the global receptive field by directly modifying the scanning mode of Mamba, neglecting the crucial role that local information plays in dense prediction tasks (e.g., CD). In this article, we propose a model called CDMamba, which effectively combines global and local features for handling CD tasks. Specifically, the Scaled Residual ConvMamba (SRCM) block is proposed to utilize the ability of Mamba to extract global features and convolution to enhance the local details, to alleviate the issue that current Mamba-based methods lack detailed clues and are difficult to achieve fine detection in dense prediction tasks. Furthermore, considering the characteristics of bi-temporal feature interaction required for CD, the Adaptive Global Local Guided Fusion (AGLGF) block is proposed to dynamically facilitate the bi-temporal interaction guided by other temporal global/local features. Our intuition is that more discriminative change features can be acquired with the guidance of other temporal features. Extensive experiments on three datasets demonstrate that our proposed CDMamba outperforms the current state-of-the-art methods. Our code will be open-sourced at https://github.com/zmoka-zht/CDMamba.
Abstract:The recent advancement of generative foundational models has ushered in a new era of image generation in the realm of natural images, revolutionizing art design, entertainment, environment simulation, and beyond. Despite producing high-quality samples, existing methods are constrained to generating images of scenes at a limited scale. In this paper, we present MetaEarth, a generative foundation model that breaks the barrier by scaling image generation to a global level, exploring the creation of worldwide, multi-resolution, unbounded, and virtually limitless remote sensing images. In MetaEarth, we propose a resolution-guided self-cascading generative framework, which enables the generating of images at any region with a wide range of geographical resolutions. To achieve unbounded and arbitrary-sized image generation, we design a novel noise sampling strategy for denoising diffusion models by analyzing the generation conditions and initial noise. To train MetaEarth, we construct a large dataset comprising multi-resolution optical remote sensing images with geographical information. Experiments have demonstrated the powerful capabilities of our method in generating global-scale images. Additionally, the MetaEarth serves as a data engine that can provide high-quality and rich training data for downstream tasks. Our model opens up new possibilities for constructing generative world models by simulating Earth visuals from an innovative overhead perspective.
Abstract:Remote Sensing Image Change Captioning (RSICC) aims to describe surface changes between multi-temporal remote sensing images in language, including the changed object categories, locations, and dynamics of changing objects (e.g., added or disappeared). This poses challenges to spatial and temporal modeling of bi-temporal features. Despite previous methods progressing in the spatial change perception, there are still weaknesses in joint spatial-temporal modeling. To address this, in this paper, we propose a novel RSCaMa model, which achieves efficient joint spatial-temporal modeling through multiple CaMa layers, enabling iterative refinement of bi-temporal features. To achieve efficient spatial modeling, we introduce the recently popular Mamba (a state space model) with a global receptive field and linear complexity into the RSICC task and propose the Spatial Difference-aware SSM (SD-SSM), overcoming limitations of previous CNN- and Transformer-based methods in the receptive field and computational complexity. SD-SSM enhances the model's ability to capture spatial changes sharply. In terms of efficient temporal modeling, considering the potential correlation between the temporal scanning characteristics of Mamba and the temporality of the RSICC, we propose the Temporal-Traversing SSM (TT-SSM), which scans bi-temporal features in a temporal cross-wise manner, enhancing the model's temporal understanding and information interaction. Experiments validate the effectiveness of the efficient joint spatial-temporal modeling and demonstrate the outstanding performance of RSCaMa and the potential of the Mamba in the RSICC task. Additionally, we systematically compare three different language decoders, including Mamba, GPT-style decoder, and Transformer decoder, providing valuable insights for future RSICC research. The code will be available at \emph{\url{https://github.com/Chen-Yang-Liu/RSCaMa}}
Abstract:The segmentation and interpretation of the Martian surface play a pivotal role in Mars exploration, providing essential data for the trajectory planning and obstacle avoidance of rovers. However, the complex topography, similar surface features, and the lack of extensive annotated data pose significant challenges to the high-precision semantic segmentation of the Martian surface. To address these challenges, we propose a novel encoder-decoder based Mars segmentation network, termed MarsSeg. Specifically, we employ an encoder-decoder structure with a minimized number of down-sampling layers to preserve local details. To facilitate a high-level semantic understanding across the shadow multi-level feature maps, we introduce a feature enhancement connection layer situated between the encoder and decoder. This layer incorporates Mini Atrous Spatial Pyramid Pooling (Mini-ASPP), Polarized Self-Attention (PSA), and Strip Pyramid Pooling Module (SPPM). The Mini-ASPP and PSA are specifically designed for shadow feature enhancement, thereby enabling the expression of local details and small objects. Conversely, the SPPM is employed for deep feature enhancement, facilitating the extraction of high-level semantic category-related information. Experimental results derived from the Mars-Seg and AI4Mars datasets substantiate that the proposed MarsSeg outperforms other state-of-the-art methods in segmentation performance, validating the efficacy of each proposed component.
Abstract:Monitoring changes in the Earth's surface is crucial for understanding natural processes and human impacts, necessitating precise and comprehensive interpretation methodologies. Remote sensing satellite imagery offers a unique perspective for monitoring these changes, leading to the emergence of remote sensing image change interpretation (RSICI) as a significant research focus. Current RSICI technology encompasses change detection and change captioning, each with its limitations in providing comprehensive interpretation. To address this, we propose an interactive Change-Agent, which can follow user instructions to achieve comprehensive change interpretation and insightful analysis according to user instructions, such as change detection and change captioning, change object counting, change cause analysis, etc. The Change-Agent integrates a multi-level change interpretation (MCI) model as the eyes and a large language model (LLM) as the brain. The MCI model contains two branches of pixel-level change detection and semantic-level change captioning, in which multiple BI-temporal Iterative Interaction (BI3) layers utilize Local Perception Enhancement (LPE) and the Global Difference Fusion Attention (GDFA) modules to enhance the model's discriminative feature representation capabilities. To support the training of the MCI model, we build the LEVIR-MCI dataset with a large number of change masks and captions of changes. Extensive experiments demonstrate the effectiveness of the proposed MCI model and highlight the promising potential of our Change-Agent in facilitating comprehensive and intelligent interpretation of surface changes. To facilitate future research, we will make our dataset and codebase of the MCI model and Change-Agent publicly available at https://github.com/Chen-Yang-Liu/Change-Agent
Abstract:Remote sensing image classification forms the foundation of various understanding tasks, serving a crucial function in remote sensing image interpretation. The recent advancements of Convolutional Neural Networks (CNNs) and Transformers have markedly enhanced classification accuracy. Nonetheless, remote sensing scene classification remains a significant challenge, especially given the complexity and diversity of remote sensing scenarios and the variability of spatiotemporal resolutions. The capacity for whole-image understanding can provide more precise semantic cues for scene discrimination. In this paper, we introduce RSMamba, a novel architecture for remote sensing image classification. RSMamba is based on the State Space Model (SSM) and incorporates an efficient, hardware-aware design known as the Mamba. It integrates the advantages of both a global receptive field and linear modeling complexity. To overcome the limitation of the vanilla Mamba, which can only model causal sequences and is not adaptable to two-dimensional image data, we propose a dynamic multi-path activation mechanism to augment Mamba's capacity to model non-causal data. Notably, RSMamba maintains the inherent modeling mechanism of the vanilla Mamba, yet exhibits superior performance across multiple remote sensing image classification datasets. This indicates that RSMamba holds significant potential to function as the backbone of future visual foundation models. The code will be available at \url{https://github.com/KyanChen/RSMamba}.