



Abstract:Efficient retrieval of external knowledge bases and web pages is crucial for enhancing the reasoning abilities of LLMs. Previous works on training LLMs to leverage external retrievers for solving complex problems have predominantly employed end-to-end reinforcement learning. However, these approaches neglect supervision over the reasoning process, making it difficult to guarantee logical coherence and rigor. To address these limitations, we propose Thinker, a hierarchical thinking model for deep search through multi-turn interaction, making the reasoning process supervisable and verifiable. It decomposes complex problems into independently solvable sub-problems, each dually represented in both natural language and an equivalent logical function to support knowledge base and web searches. Concurrently, dependencies between sub-problems are passed as parameters via these logical functions, enhancing the logical coherence of the problem-solving process. To avoid unnecessary external searches, we perform knowledge boundary determination to check if a sub-problem is within the LLM's intrinsic knowledge, allowing it to answer directly. Experimental results indicate that with as few as several hundred training samples, the performance of Thinker is competitive with established baselines. Furthermore, when scaled to the full training set, Thinker significantly outperforms these methods across various datasets and model sizes. The source code is available at https://github.com/OpenSPG/KAG-Thinker.
Abstract:Large Language Models (LLMs) achieve excellent performance in natural language reasoning tasks through pre-training on vast unstructured text, enabling them to understand the logic in natural language and generate logic-consistent responses. However, the representational differences between unstructured and structured knowledge make LLMs inherently struggle to maintain logic consistency, leading to \textit{Logic Drift} challenges in structured knowledge reasoning tasks such as Knowledge Graph Question Answering (KGQA). Existing methods address this limitation by designing complex workflows embedded in prompts to guide LLM reasoning. Nevertheless, these approaches only provide input-level guidance and fail to fundamentally address the \textit{Logic Drift} in LLM outputs. Additionally, their inflexible reasoning workflows cannot adapt to different tasks and knowledge graphs. To enhance LLMs' logic consistency in structured knowledge reasoning, we specifically target the logits output from the autoregressive generation process. We propose the \textit{Logits-to-Logic} framework, which incorporates logits strengthening and logits filtering as core modules to correct logical defects in LLM outputs. Extensive experiments show that our approach significantly improves LLMs' logic consistency in structured knowledge reasoning and achieves state-of-the-art performance on multiple KGQA benchmarks.




Abstract:We present Ring-1T, the first open-source, state-of-the-art thinking model with a trillion-scale parameter. It features 1 trillion total parameters and activates approximately 50 billion per token. Training such models at a trillion-parameter scale introduces unprecedented challenges, including train-inference misalignment, inefficiencies in rollout processing, and bottlenecks in the RL system. To address these, we pioneer three interconnected innovations: (1) IcePop stabilizes RL training via token-level discrepancy masking and clipping, resolving instability from training-inference mismatches; (2) C3PO++ improves resource utilization for long rollouts under a token budget by dynamically partitioning them, thereby obtaining high time efficiency; and (3) ASystem, a high-performance RL framework designed to overcome the systemic bottlenecks that impede trillion-parameter model training. Ring-1T delivers breakthrough results across critical benchmarks: 93.4 on AIME-2025, 86.72 on HMMT-2025, 2088 on CodeForces, and 55.94 on ARC-AGI-v1. Notably, it attains a silver medal-level result on the IMO-2025, underscoring its exceptional reasoning capabilities. By releasing the complete 1T parameter MoE model to the community, we provide the research community with direct access to cutting-edge reasoning capabilities. This contribution marks a significant milestone in democratizing large-scale reasoning intelligence and establishes a new baseline for open-source model performance.