Abstract:In recommendation systems, scaling up feature-interaction modules (e.g., Wukong, RankMixer) or user-behavior sequence modules (e.g., LONGER) has achieved notable success. However, these efforts typically proceed on separate tracks, which not only hinders bidirectional information exchange but also prevents unified optimization and scaling. In this paper, we propose OneTrans, a unified Transformer backbone that simultaneously performs user-behavior sequence modeling and feature interaction. OneTrans employs a unified tokenizer to convert both sequential and non-sequential attributes into a single token sequence. The stacked OneTrans blocks share parameters across similar sequential tokens while assigning token-specific parameters to non-sequential tokens. Through causal attention and cross-request KV caching, OneTrans enables precomputation and caching of intermediate representations, significantly reducing computational costs during both training and inference. Experimental results on industrial-scale datasets demonstrate that OneTrans scales efficiently with increasing parameters, consistently outperforms strong baselines, and yields a 5.68% lift in per-user GMV in online A/B tests.
Abstract:In the subdivision approach to robot path planning, we need to subdivide the configuration space of a robot into nice cells to perform various computations. For a rigid spatial robot, this configuration space is $SE(3)=\mathbb{R}^3\times SO(3)$. The subdivision of $\mathbb{R}^3$ is standard but so far, there are no global subdivision schemes for $SO(3)$. We recently introduced a representation for $SO(3)$ suitable for subdivision. This paper investigates the distortion of the natural metric on $SO(3)$ caused by our representation. The proper framework for this study lies in the Riemannian geometry of $SO(3)$, enabling us to obtain sharp distortion bounds.




Abstract:Neural-based multi-task learning (MTL) has been successfully applied to many recommendation applications. However, these MTL models (e.g., MMoE, PLE) did not consider feature interaction during the optimization, which is crucial for capturing complex high-order features and has been widely used in ranking models for real-world recommender systems. Moreover, through feature importance analysis across various tasks in MTL, we have observed an interesting divergence phenomenon that the same feature can have significantly different importance across different tasks in MTL. To address these issues, we propose Deep Multiple Task-specific Feature Interactions Network (DTN) with a novel model structure design. DTN introduces multiple diversified task-specific feature interaction methods and task-sensitive network in MTL networks, enabling the model to learn task-specific diversified feature interaction representations, which improves the efficiency of joint representation learning in a general setup. We applied DTN to our company's real-world E-commerce recommendation dataset, which consisted of over 6.3 billion samples, the results demonstrated that DTN significantly outperformed state-of-the-art MTL models. Moreover, during online evaluation of DTN in a large-scale E-commerce recommender system, we observed a 3.28% in clicks, a 3.10% increase in orders and a 2.70% increase in GMV (Gross Merchandise Value) compared to the state-of-the-art MTL models. Finally, extensive offline experiments conducted on public benchmark datasets demonstrate that DTN can be applied to various scenarios beyond recommendations, enhancing the performance of ranking models.




Abstract:We consider path planning for a rigid spatial robot with 6 degrees of freedom (6 DOFs), moving amidst polyhedral obstacles. A correct, complete and practical path planner for such a robot has never been achieved, although this is widely recognized as a key challenge in robotics. This paper provides a complete "explicit" design, down to explicit geometric primitives that are easily implementable. Our design is within an algorithmic framework for path planners, called Soft Subdivision Search (SSS). The framework is based on the twin foundations of $\epsilon$-exactness and soft predicates, which are critical for rigorous numerical implementations. The practicality of SSS has been previously demonstrated for various robots including 5-DOF spatial robots. In this paper, we solve several significant technical challenges for SE(3) robots: (1) We first ensure the correct theory by proving a general form of the Fundamental Theorem of the SSS theory. We prove this within an axiomatic framework, thus making it easy for future applications of this theory. (2) One component of $SE(3) = R^3 \times SO(3)$ is the non-Euclidean, non-orientable space SO(3). We design a novel topologically correct data structure for SO(3). Using the concept of subdivision charts and atlases for SO(3), we can now carry out subdivision of SO(3). (3) The geometric problem of collision detection takes place in $R^3$, via the footprint map. Unlike sampling-based approaches, we must reason with the notion of footprints of configuration boxes, which is much harder to characterize. Exploiting the theory of soft predicates, we design suitable approximate footprints which, when combined with the highly effective feature-set technique, lead to soft predicates. (4) Finally, we make the underlying geometric computation "explicit", i.e., avoiding a general solver of polynomial systems, in order to allow a direct implementation.




Abstract:Dynamic malware analysis executes the program in an isolated environment and monitors its run-time behaviour (e.g., system API calls) for malware detection. This technique has been proven to be effective against various code obfuscation techniques and newly released ("zero-day") malware. However, existing works typically only consider the API name while ignoring the arguments, or require complex feature engineering operations and expert knowledge to process the arguments. In this paper, we propose a novel and low-cost feature extraction approach, and an effective deep neural network architecture for accurate and fast malware detection. Specifically, the feature representation approach utilizes a feature hashing trick to encode the API call arguments associated with the API name. The deep neural network architecture applies multiple Gated-CNNs (convolutional neural networks) to transform the extracted features of each API call. The outputs are further processed through LSTM (long-short term memory networks) to learn the sequential correlation among API calls. Experiments show that our solution outperforms baselines significantly on a large real dataset. Valuable insights about feature engineering and architecture design are derived from ablation study.