Abstract:To protect an organizations' endpoints from sophisticated cyberattacks, advanced detection methods are required. In this research, we present GCNetOmaly: a graph convolutional network (GCN)-based variational autoencoder (VAE) anomaly detector trained on data that include connection events among internal and external machines. As input, the proposed GCN-based VAE model receives two matrices: (i) the normalized adjacency matrix, which represents the connections among the machines, and (ii) the feature matrix, which includes various features (demographic, statistical, process-related, and Node2vec structural features) that are used to profile the individual nodes/machines. After training the model on data collected for a predefined time window, the model is applied on the same data; the reconstruction score obtained by the model for a given machine then serves as the machine's anomaly score. GCNetOmaly was evaluated on real, large-scale data logged by Carbon Black EDR from a large financial organization's automated teller machines (ATMs) as well as communication with Active Directory (AD) servers in two setups: unsupervised and supervised. The results of our evaluation demonstrate GCNetOmaly's effectiveness in detecting anomalous behavior of machines on unsupervised data.
Abstract:Machine learning (ML) models are known to be vulnerable to a number of attacks that target the integrity of their predictions or the privacy of their training data. To carry out these attacks, a black-box adversary must typically possess the ability to query the model and observe its outputs (e.g., labels). In this work, we demonstrate, for the first time, the ability to enhance such decision-based attacks. To accomplish this, we present an approach that exploits a novel side channel in which the adversary simply measures the execution time of the algorithm used to post-process the predictions of the ML model under attack. The leakage of inference-state elements into algorithmic timing side channels has never been studied before, and we have found that it can contain rich information that facilitates superior timing attacks that significantly outperform attacks based solely on label outputs. In a case study, we investigate leakage from the non-maximum suppression (NMS) algorithm, which plays a crucial role in the operation of object detectors. In our examination of the timing side-channel vulnerabilities associated with this algorithm, we identified the potential to enhance decision-based attacks. We demonstrate attacks against the YOLOv3 detector, leveraging the timing leakage to successfully evade object detection using adversarial examples, and perform dataset inference. Our experiments show that our adversarial examples exhibit superior perturbation quality compared to a decision-based attack. In addition, we present a new threat model in which dataset inference based solely on timing leakage is performed. To address the timing leakage vulnerability inherent in the NMS algorithm, we explore the potential and limitations of implementing constant-time inference passes as a mitigation strategy.
Abstract:Object detection models, which are widely used in various domains (such as retail), have been shown to be vulnerable to adversarial attacks. Existing methods for detecting adversarial attacks on object detectors have had difficulty detecting new real-life attacks. We present X-Detect, a novel adversarial patch detector that can: i) detect adversarial samples in real time, allowing the defender to take preventive action; ii) provide explanations for the alerts raised to support the defender's decision-making process, and iii) handle unfamiliar threats in the form of new attacks. Given a new scene, X-Detect uses an ensemble of explainable-by-design detectors that utilize object extraction, scene manipulation, and feature transformation techniques to determine whether an alert needs to be raised. X-Detect was evaluated in both the physical and digital space using five different attack scenarios (including adaptive attacks) and the COCO dataset and our new Superstore dataset. The physical evaluation was performed using a smart shopping cart setup in real-world settings and included 17 adversarial patch attacks recorded in 1,700 adversarial videos. The results showed that X-Detect outperforms the state-of-the-art methods in distinguishing between benign and adversarial scenes for all attack scenarios while maintaining a 0% FPR (no false alarms) and providing actionable explanations for the alerts raised. A demo is available.
Abstract:Weird, unusual, and uncanny images pique the curiosity of observers because they challenge commonsense. For example, an image released during the 2022 world cup depicts the famous soccer stars Lionel Messi and Cristiano Ronaldo playing chess, which playfully violates our expectation that their competition should occur on the football field. Humans can easily recognize and interpret these unconventional images, but can AI models do the same? We introduce WHOOPS!, a new dataset and benchmark for visual commonsense. The dataset is comprised of purposefully commonsense-defying images created by designers using publicly-available image generation tools like Midjourney. We consider several tasks posed over the dataset. In addition to image captioning, cross-modal matching, and visual question answering, we introduce a difficult explanation generation task, where models must identify and explain why a given image is unusual. Our results show that state-of-the-art models such as GPT3 and BLIP2 still lag behind human performance on WHOOPS!. We hope our dataset will inspire the development of AI models with stronger visual commonsense reasoning abilities. Data, models and code are available at the project website: whoops-benchmark.github.io
Abstract:Out-of-distribution (OOD) detection has attracted a large amount of attention from the machine learning research community in recent years due to its importance in deployed systems. Most of the previous studies focused on the detection of OOD samples in the multi-class classification task. However, OOD detection in the multi-label classification task remains an underexplored domain. In this research, we propose YolOOD - a method that utilizes concepts from the object detection domain to perform OOD detection in the multi-label classification task. Object detection models have an inherent ability to distinguish between objects of interest (in-distribution) and irrelevant objects (e.g., OOD objects) on images that contain multiple objects from different categories. These abilities allow us to convert a regular object detection model into an image classifier with inherent OOD detection capabilities with just minor changes. We compare our approach to state-of-the-art OOD detection methods and demonstrate YolOOD's ability to outperform these methods on a comprehensive suite of in-distribution and OOD benchmark datasets.
Abstract:Model agnostic feature attribution algorithms (such as SHAP and LIME) are ubiquitous techniques for explaining the decisions of complex classification models, such as deep neural networks. However, since complex classification models produce superior performance when trained on low-level (or encoded) features, in many cases, the explanations generated by these algorithms are neither interpretable nor usable by humans. Methods proposed in recent studies that support the generation of human-interpretable explanations are impractical, because they require a fully invertible transformation function that maps the model's input features to the human-interpretable features. In this work, we introduce Latent SHAP, a black-box feature attribution framework that provides human-interpretable explanations, without the requirement for a fully invertible transformation function. We demonstrate Latent SHAP's effectiveness using (1) a controlled experiment where invertible transformation functions are available, which enables robust quantitative evaluation of our method, and (2) celebrity attractiveness classification (using the CelebA dataset) where invertible transformation functions are not available, which enables thorough qualitative evaluation of our method.
Abstract:In recent years, various watermarking methods were suggested to detect computer vision models obtained illegitimately from their owners, however they fail to demonstrate satisfactory robustness against model extraction attacks. In this paper, we present an adaptive framework to watermark a protected model, leveraging the unique behavior present in the model due to a unique random seed initialized during the model training. This watermark is used to detect extracted models, which have the same unique behavior, indicating an unauthorized usage of the protected model's intellectual property (IP). First, we show how an initial seed for random number generation as part of model training produces distinct characteristics in the model's decision boundaries, which are inherited by extracted models and present in their decision boundaries, but aren't present in non-extracted models trained on the same data-set with a different seed. Based on our findings, we suggest the Robust Adaptive Watermarking (RAW) Framework, which utilizes the unique behavior present in the protected and extracted models to generate a watermark key-set and verification model. We show that the framework is robust to (1) unseen model extraction attacks, and (2) extracted models which undergo a blurring method (e.g., weight pruning). We evaluate the framework's robustness against a naive attacker (unaware that the model is watermarked), and an informed attacker (who employs blurring strategies to remove watermarked behavior from an extracted model), and achieve outstanding (i.e., >0.9) AUC values. Finally, we show that the framework is robust to model extraction attacks with different structure and/or architecture than the protected model.
Abstract:Adversarial attacks against deep learning-based object detectors (ODs) have been studied extensively in the past few years. These attacks cause the model to make incorrect predictions by placing a patch containing an adversarial pattern on the target object or anywhere within the frame. However, none of prior research proposed a misclassification attack on ODs, in which the patch is applied on the target object. In this study, we propose a novel, universal, targeted, label-switch attack against the state-of-the-art object detector, YOLO. In our attack, we use (i) a tailored projection function to enable the placement of the adversarial patch on multiple target objects in the image (e.g., cars), each of which may be located a different distance away from the camera or have a different view angle relative to the camera, and (ii) a unique loss function capable of changing the label of the attacked objects. The proposed universal patch, which is trained in the digital domain, is transferable to the physical domain. We performed an extensive evaluation using different types of object detectors, different video streams captured by different cameras, and various target classes, and evaluated different configurations of the adversarial patch in the physical domain.
Abstract:Adversarial examples can be used to maliciously and covertly change a model's prediction. It is known that an adversarial example designed for one model can transfer to other models as well. This poses a major threat because it means that attackers can target systems in a blackbox manner. In the domain of transferability, researchers have proposed ways to make attacks more transferable and to make models more robust to transferred examples. However, to the best of our knowledge, there are no works which propose a means for ranking the transferability of an adversarial example in the perspective of a blackbox attacker. This is an important task because an attacker is likely to use only a select set of examples, and therefore will want to select the samples which are most likely to transfer. In this paper we suggest a method for ranking the transferability of adversarial examples without access to the victim's model. To accomplish this, we define and estimate the expected transferability of a sample given limited information about the victim. We also explore practical scenarios: where the adversary can select the best sample to attack and where the adversary must use a specific sample but can choose different perturbations. Through our experiments, we found that our ranking method can increase an attacker's success rate by up to 80% compared to the baseline (random selection without ranking).
Abstract:While vision-and-language models perform well on tasks such as visual question answering, they struggle when it comes to basic human commonsense reasoning skills. In this work, we introduce WinoGAViL: an online game to collect vision-and-language associations, (e.g., werewolves to a full moon), used as a dynamic benchmark to evaluate state-of-the-art models. Inspired by the popular card game Codenames, a spymaster gives a textual cue related to several visual candidates, and another player has to identify them. Human players are rewarded for creating associations that are challenging for a rival AI model but still solvable by other human players. We use the game to collect 3.5K instances, finding that they are intuitive for humans (>90% Jaccard index) but challenging for state-of-the-art AI models, where the best model (ViLT) achieves a score of 52%, succeeding mostly where the cue is visually salient. Our analysis as well as the feedback we collect from players indicate that the collected associations require diverse reasoning skills, including general knowledge, common sense, abstraction, and more. We release the dataset, the code and the interactive game, aiming to allow future data collection that can be used to develop models with better association abilities.