Adversarial attacks against deep learning-based object detectors (ODs) have been studied extensively in the past few years. These attacks cause the model to make incorrect predictions by placing a patch containing an adversarial pattern on the target object or anywhere within the frame. However, none of prior research proposed a misclassification attack on ODs, in which the patch is applied on the target object. In this study, we propose a novel, universal, targeted, label-switch attack against the state-of-the-art object detector, YOLO. In our attack, we use (i) a tailored projection function to enable the placement of the adversarial patch on multiple target objects in the image (e.g., cars), each of which may be located a different distance away from the camera or have a different view angle relative to the camera, and (ii) a unique loss function capable of changing the label of the attacked objects. The proposed universal patch, which is trained in the digital domain, is transferable to the physical domain. We performed an extensive evaluation using different types of object detectors, different video streams captured by different cameras, and various target classes, and evaluated different configurations of the adversarial patch in the physical domain.
Adversarial attacks against deep learning-based object detectors have been studied extensively in the past few years. The proposed attacks aimed solely at compromising the models' integrity (i.e., trustworthiness of the model's prediction), while adversarial attacks targeting the models' availability, a critical aspect in safety-critical domains such as autonomous driving, have not been explored by the machine learning research community. In this paper, we propose NMS-Sponge, a novel approach that negatively affects the decision latency of YOLO, a state-of-the-art object detector, and compromises the model's availability by applying a universal adversarial perturbation (UAP). In our experiments, we demonstrate that the proposed UAP is able to increase the processing time of individual frames by adding "phantom" objects while preserving the detection of the original objects.