Abstract:Recent advances in game AI have demonstrated the feasibility of training agents that surpass top-tier human professionals in complex environments such as Honor of Kings (HoK), a leading mobile multiplayer online battle arena (MOBA) game. However, deploying such powerful agents on mobile devices remains a major challenge. On one hand, the intricate multi-modal state representation and hierarchical action space of HoK demand large, sophisticated policy networks that are inherently difficult to compress into lightweight forms. On the other hand, production deployment requires high-frequency inference under strict energy and latency constraints on mobile platform. To the best of our knowledge, bridging large-scale game AI and practical on-device deployment has not been systematically studied. In this work, we propose a Pareto optimality guided pipeline and design a high-efficiency student architecture search space tailored for mobile execution, enabling systematic exploration of the trade-off between performance and efficiency. Experimental results demonstrate that the distilled model achieves remarkable efficiency, including an $12.4\times$ faster inference speed (under 0.5ms per frame) and a $15.6\times$ improvement in energy efficiency (under 0.5mAh per game), while retaining a 40.32% win rate against the original teacher model.
Abstract:The Decision Transformer (DT) has established a powerful sequence modeling approach to offline reinforcement learning. It conditions its action predictions on Return-to-Go (RTG), using it both to distinguish trajectory quality during training and to guide action generation at inference. In this work, we identify a critical redundancy in this design: feeding the entire sequence of RTGs into the Transformer is theoretically unnecessary, as only the most recent RTG affects action prediction. We show that this redundancy can impair DT's performance through experiments. To resolve this, we propose the Decoupled DT (DDT). DDT simplifies the architecture by processing only observation and action sequences through the Transformer, using the latest RTG to guide the action prediction. This streamlined approach not only improves performance but also reduces computational cost. Our experiments show that DDT significantly outperforms DT and establishes competitive performance against state-of-the-art DT variants across multiple offline RL tasks.
Abstract:People need to internalize the skills of AI agents to improve their own capabilities. Our paper focuses on Mahjong, a multiplayer game involving imperfect information and requiring effective long-term decision-making amidst randomness and hidden information. Through the efforts of AI researchers, several impressive Mahjong AI agents have already achieved performance levels comparable to those of professional human players; however, these agents are often treated as black boxes from which few insights can be gleaned. This paper introduces Mxplainer, a parameterized search algorithm that can be converted into an equivalent neural network to learn the parameters of black-box agents. Experiments conducted on AI and human player data demonstrate that the learned parameters provide human-understandable insights into these agents' characteristics and play styles. In addition to analyzing the learned parameters, we also showcase how our search-based framework can locally explain the decision-making processes of black-box agents for most Mahjong game states.