School of Computer Science, Tel Aviv University, Google Research, Tel Aviv
Abstract:We study the multi-armed bandit problem with adversarially chosen delays in the Best-of-Both-Worlds (BoBW) framework, which aims to achieve near-optimal performance in both stochastic and adversarial environments. While prior work has made progress toward this goal, existing algorithms suffer from significant gaps to the known lower bounds, especially in the stochastic settings. Our main contribution is a new algorithm that, up to logarithmic factors, matches the known lower bounds in each setting individually. In the adversarial case, our algorithm achieves regret of $\widetilde{O}(\sqrt{KT} + \sqrt{D})$, which is optimal up to logarithmic terms, where $T$ is the number of rounds, $K$ is the number of arms, and $D$ is the cumulative delay. In the stochastic case, we provide a regret bound which scale as $\sum_{i:\Delta_i>0}\left(\log T/\Delta_i\right) + \frac{1}{K}\sum \Delta_i \sigma_{max}$, where $\Delta_i$ is the sub-optimality gap of arm $i$ and $\sigma_{\max}$ is the maximum number of missing observations. To the best of our knowledge, this is the first BoBW algorithm to simultaneously match the lower bounds in both stochastic and adversarial regimes in delayed environment. Moreover, even beyond the BoBW setting, our stochastic regret bound is the first to match the known lower bound under adversarial delays, improving the second term over the best known result by a factor of $K$.
Abstract:We introduce a new Bayesian perspective on the concept of data reconstruction, and leverage this viewpoint to propose a new security definition that, in certain settings, provably prevents reconstruction attacks. We use our paradigm to shed new light on one of the most notorious attacks in the privacy and memorization literature - fingerprinting code attacks (FPC). We argue that these attacks are really a form of membership inference attacks, rather than reconstruction attacks. Furthermore, we show that if the goal is solely to prevent reconstruction (but not membership inference), then in some cases the impossibility results derived from FPC no longer apply.
Abstract:Swap regret is a notion that has proven itself to be central to the study of general-sum normal-form games, with swap-regret minimization leading to convergence to the set of correlated equilibria and guaranteeing non-manipulability against a self-interested opponent. However, the situation for more general classes of games -- such as Bayesian games and extensive-form games -- is less clear-cut, with multiple candidate definitions for swap-regret but no known efficiently minimizable variant of swap regret that implies analogous non-manipulability guarantees. In this paper, we present a new variant of swap regret for polytope games that we call ``profile swap regret'', with the property that obtaining sublinear profile swap regret is both necessary and sufficient for any learning algorithm to be non-manipulable by an opponent (resolving an open problem of Mansour et al., 2022). Although we show profile swap regret is NP-hard to compute given a transcript of play, we show it is nonetheless possible to design efficient learning algorithms that guarantee at most $O(\sqrt{T})$ profile swap regret. Finally, we explore the correlated equilibrium notion induced by low-profile-swap-regret play, and demonstrate a gap between the set of outcomes that can be implemented by this learning process and the set of outcomes that can be implemented by a third-party mediator (in contrast to the situation in normal-form games).
Abstract:We study online finite-horizon Markov Decision Processes with adversarially changing loss and aggregate bandit feedback (a.k.a full-bandit). Under this type of feedback, the agent observes only the total loss incurred over the entire trajectory, rather than the individual losses at each intermediate step within the trajectory. We introduce the first Policy Optimization algorithms for this setting. In the known-dynamics case, we achieve the first \textit{optimal} regret bound of $\tilde \Theta(H^2\sqrt{SAK})$, where $K$ is the number of episodes, $H$ is the episode horizon, $S$ is the number of states, and $A$ is the number of actions. In the unknown dynamics case we establish regret bound of $\tilde O(H^3 S \sqrt{AK})$, significantly improving the best known result by a factor of $H^2 S^5 A^2$.
Abstract:We consider non-stationary multi-arm bandit (MAB) where the expected reward of each action follows a linear function of the number of times we executed the action. Our main result is a tight regret bound of $\tilde{\Theta}(T^{4/5}K^{3/5})$, by providing both upper and lower bounds. We extend our results to derive instance dependent regret bounds, which depend on the unknown parametrization of the linear drift of the rewards.
Abstract:Cost-sensitive loss functions are crucial in many real-world prediction problems, where different types of errors are penalized differently; for example, in medical diagnosis, a false negative prediction can lead to worse consequences than a false positive prediction. However, traditional PAC learning theory has mostly focused on the symmetric 0-1 loss, leaving cost-sensitive losses largely unaddressed. In this work, we extend the celebrated theory of boosting to incorporate both cost-sensitive and multi-objective losses. Cost-sensitive losses assign costs to the entries of a confusion matrix, and are used to control the sum of prediction errors accounting for the cost of each error type. Multi-objective losses, on the other hand, simultaneously track multiple cost-sensitive losses, and are useful when the goal is to satisfy several criteria at once (e.g., minimizing false positives while keeping false negatives below a critical threshold). We develop a comprehensive theory of cost-sensitive and multi-objective boosting, providing a taxonomy of weak learning guarantees that distinguishes which guarantees are trivial (i.e., can always be achieved), which ones are boostable (i.e., imply strong learning), and which ones are intermediate, implying non-trivial yet not arbitrarily accurate learning. For binary classification, we establish a dichotomy: a weak learning guarantee is either trivial or boostable. In the multiclass setting, we describe a more intricate landscape of intermediate weak learning guarantees. Our characterization relies on a geometric interpretation of boosting, revealing a surprising equivalence between cost-sensitive and multi-objective losses.
Abstract:Precision and Recall are foundational metrics in machine learning where both accurate predictions and comprehensive coverage are essential, such as in recommender systems and multi-label learning. In these tasks, balancing precision (the proportion of relevant items among those predicted) and recall (the proportion of relevant items successfully predicted) is crucial. A key challenge is that one-sided feedback--where only positive examples are observed during training--is inherent in many practical problems. For instance, in recommender systems like YouTube, training data only consists of videos that a user has actively selected, while unselected items remain unseen. Despite this lack of negative feedback in training, avoiding undesirable recommendations at test time is essential. We introduce a PAC learning framework where each hypothesis is represented by a graph, with edges indicating positive interactions, such as between users and items. This framework subsumes the classical binary and multi-class PAC learning models as well as multi-label learning with partial feedback, where only a single random correct label per example is observed, rather than all correct labels. Our work uncovers a rich statistical and algorithmic landscape, with nuanced boundaries on what can and cannot be learned. Notably, classical methods like Empirical Risk Minimization fail in this setting, even for simple hypothesis classes with only two hypotheses. To address these challenges, we develop novel algorithms that learn exclusively from positive data, effectively minimizing both precision and recall losses. Specifically, in the realizable setting, we design algorithms that achieve optimal sample complexity guarantees. In the agnostic case, we show that it is impossible to achieve additive error guarantees--as is standard in PAC learning--and instead obtain meaningful multiplicative approximations.
Abstract:We study the regret in stochastic Multi-Armed Bandits (MAB) with multiple agents that communicate over an arbitrary connected communication graph. We show a near-optimal individual regret bound of $\tilde{O}(\sqrt{AT/m}+A)$, where $A$ is the number of actions, $T$ the time horizon, and $m$ the number of agents. In particular, assuming a sufficient number of agents, we achieve a regret bound of $\tilde{O}(A)$, which is independent of the sub-optimality gaps and the diameter of the communication graph. To the best of our knowledge, our study is the first to show an individual regret bound in cooperative stochastic MAB that is independent of the graph's diameter and applicable to non-fully-connected communication graphs.
Abstract:In many repeated auction settings, participants care not only about how frequently they win but also how their winnings are distributed over time. This problem arises in various practical domains where avoiding congested demand is crucial, such as online retail sales and compute services, as well as in advertising campaigns that require sustained visibility over time. We introduce a simple model of this phenomenon, modeling it as a budgeted auction where the value of a win is a concave function of the time since the last win. This implies that for a given number of wins, even spacing over time is optimal. We also extend our model and results to the case when not all wins result in "conversions" (realization of actual gains), and the probability of conversion depends on a context. The goal is to maximize and evenly space conversions rather than just wins. We study the optimal policies for this setting in second-price auctions and offer learning algorithms for the bidders that achieve low regret against the optimal bidding policy in a Bayesian online setting. Our main result is a computationally efficient online learning algorithm that achieves $\tilde O(\sqrt T)$ regret. We achieve this by showing that an infinite-horizon Markov decision process (MDP) with the budget constraint in expectation is essentially equivalent to our problem, even when limiting that MDP to a very small number of states. The algorithm achieves low regret by learning a bidding policy that chooses bids as a function of the context and the system's state, which will be the time elapsed since the last win (or conversion). We show that state-independent strategies incur linear regret even without uncertainty of conversions. We complement this by showing that there are state-independent strategies that, while still having linear regret, achieve a $(1-\frac 1 e)$ approximation to the optimal reward.
Abstract:Efficiently trading off exploration and exploitation is one of the key challenges in online Reinforcement Learning (RL). Most works achieve this by carefully estimating the model uncertainty and following the so-called optimistic model. Inspired by practical ensemble methods, in this work we propose a simple and novel batch ensemble scheme that provably achieves near-optimal regret for stochastic Multi-Armed Bandits (MAB). Crucially, our algorithm has just a single parameter, namely the number of batches, and its value does not depend on distributional properties such as the scale and variance of the losses. We complement our theoretical results by demonstrating the effectiveness of our algorithm on synthetic benchmarks.