Abstract:Deep time series models are vulnerable to noisy data ubiquitous in real-world applications. Existing robustness strategies either prune data or rely on costly prior quantification, failing to balance effectiveness and efficiency. In this paper, we introduce DropoutTS, a model-agnostic plugin that shifts the paradigm from "what" to learn to "how much" to learn. DropoutTS employs a Sample-Adaptive Dropout mechanism: leveraging spectral sparsity to efficiently quantify instance-level noise via reconstruction residuals, it dynamically calibrates model learning capacity by mapping noise to adaptive dropout rates - selectively suppressing spurious fluctuations while preserving fine-grained fidelity. Extensive experiments across diverse noise regimes and open benchmarks show DropoutTS consistently boosts superior backbones' performance, delivering advanced robustness with negligible parameter overhead and no architectural modifications. Our code is available at https://github.com/CityMind-Lab/DropoutTS.
Abstract:Spatio-Temporal (ST) Foundation Models (STFMs) promise cross-dataset generalization, yet joint ST pretraining is computationally expensive and grapples with the heterogeneity of domain-specific spatial patterns. Substantially extending our preliminary conference version, we present FactoST-v2, an enhanced factorized framework redesigned for full weight transfer and arbitrary-length generalization. FactoST-v2 decouples universal temporal learning from domain-specific spatial adaptation. The first stage pretrains a minimalist encoder-only backbone using randomized sequence masking to capture invariant temporal dynamics, enabling probabilistic quantile prediction across variable horizons. The second stage employs a streamlined adapter to rapidly inject spatial awareness via meta adaptive learning and prompting. Comprehensive evaluations across diverse domains demonstrate that FactoST-v2 achieves state-of-the-art accuracy with linear efficiency - significantly outperforming existing foundation models in zero-shot and few-shot scenarios while rivaling domain-specific expert baselines. This factorized paradigm offers a practical, scalable path toward truly universal STFMs. Code is available at https://github.com/CityMind-Lab/FactoST.
Abstract:Urban villages (UVs), informal settlements embedded within China's urban fabric, have undergone widespread demolition and redevelopment in recent decades. However, there remains a lack of systematic evaluation of whether the demolished land has been effectively reused, raising concerns about the efficacy and sustainability of current redevelopment practices. To address the gap, this study proposes a deep learning-based framework to monitor the spatiotemporal changes of UVs in China. Specifically, semantic segmentation of multi-temporal remote sensing imagery is first used to map evolving UV boundaries, and then post-demolition land use is classified into six categories based on the "remained-demolished-redeveloped" phase: incomplete demolition, vacant land, construction sites, buildings, green spaces, and others. Four representative cities from China's four economic regions were selected as the study areas, i.e., Guangzhou (East), Zhengzhou (Central), Xi'an (West), and Harbin (Northeast). The results indicate: 1) UV redevelopment processes were frequently prolonged; 2) redevelopment transitions primarily occurred in peripheral areas, whereas urban cores remained relatively stable; and 3) three spatiotemporal transformation pathways, i.e., synchronized redevelopment, delayed redevelopment, and gradual optimization, were revealed. This study highlights the fragmented, complex and nonlinear nature of UV redevelopment, underscoring the need for tiered and context-sensitive planning strategies. By linking spatial dynamics with the context of redevelopment policies, the findings offer valuable empirical insights that support more inclusive, efficient, and sustainable urban renewal, while also contributing to a broader global understanding of informal settlement transformations.