Abstract:Hyperspectral images super-resolution aims to improve the spatial resolution, yet its performance is often limited at high-resolution ratios. The recent adoption of high-resolution reference images for super-resolution is driven by the poor spatial detail found in low-resolution HSIs, presenting it as a favorable method. However, these approaches cannot effectively utilize information from the reference image, due to the inaccuracy of alignment and its inadequate interaction between alignment and fusion modules. In this paper, we introduce a Spatial-Spectral Concordance Hyperspectral Super-Resolution (SSC-HSR) framework for unaligned reference RGB guided HSI SR to address the issues of inaccurate alignment and poor interactivity of the previous approaches. Specifically, to ensure spatial concordance, i.e., align images more accurately across resolutions and refine textures, we construct a Two-Stage Image Alignment with a synthetic generation pipeline in the image alignment module, where the fine-tuned optical flow model can produce a more accurate optical flow in the first stage and warp model can refine damaged textures in the second stage. To enhance the interaction between alignment and fusion modules and ensure spectral concordance during reconstruction, we propose a Feature Aggregation module and an Attention Fusion module. In the feature aggregation module, we introduce an Iterative Deformable Feature Aggregation block to achieve significant feature matching and texture aggregation with the fusion multi-scale results guidance, iteratively generating learnable offset. Besides, we introduce two basic spectral-wise attention blocks in the attention fusion module to model the inter-spectra interactions. Extensive experiments on three natural or remote-sensing datasets show that our method outperforms state-of-the-art approaches on both quantitative and qualitative evaluations.
Abstract:The intersection of physics-based vision and deep learning presents an exciting frontier for advancing computer vision technologies. By leveraging the principles of physics to inform and enhance deep learning models, we can develop more robust and accurate vision systems. Physics-based vision aims to invert the processes to recover scene properties such as shape, reflectance, light distribution, and medium properties from images. In recent years, deep learning has shown promising improvements for various vision tasks, and when combined with physics-based vision, these approaches can enhance the robustness and accuracy of vision systems. This technical report summarizes the outcomes of the Physics-Based Vision Meets Deep Learning (PBDL) 2024 challenge, held in CVPR 2024 workshop. The challenge consisted of eight tracks, focusing on Low-Light Enhancement and Detection as well as High Dynamic Range (HDR) Imaging. This report details the objectives, methodologies, and results of each track, highlighting the top-performing solutions and their innovative approaches.