College of Computing, Georgia Institute of Technology
Abstract:Domain adaptation aims to enable Large Language Models (LLMs) to generalize domain datasets unseen effectively during the training phase. However, factors such as the size of the model parameters and the scale of training data are general influencers and do not reflect the nuances of domain adaptation performance. This paper investigates the fine-grained factors affecting domain adaptation performance, analyzing the specific impact of `words' in training data on summarization tasks. We propose quantifying dataset learning difficulty as the learning difficulty of generative summarization, which is determined by two indicators: word-based compression rate and abstraction level. Our experiments conclude that, when considering dataset learning difficulty, the cross-domain overlap and the performance gain in summarization tasks exhibit an approximate linear relationship, which is not directly related to the number of words. Based on this finding, predicting a model's performance on unknown domain datasets is possible without undergoing training.
Abstract:Recent studies have demonstrated that In-Context Learning (ICL), through the use of specific demonstrations, can align Large Language Models (LLMs) with human preferences known as In-Context Alignment (ICA), indicating that models can comprehend human instructions without requiring parameter adjustments. However, the exploration of the mechanism and applicability of ICA remains limited. In this paper, we begin by dividing the context text used in ICA into three categories: format, system prompt, and example. Through ablation experiments, we investigate the effectiveness of each part in enabling ICA to function effectively. We then examine how variants in these parts impact the model's alignment performance. Our findings indicate that the example part is crucial for enhancing the model's alignment capabilities, with changes in examples significantly affecting alignment performance. We also conduct a comprehensive evaluation of ICA's zero-shot capabilities in various alignment tasks. The results indicate that compared to parameter fine-tuning methods, ICA demonstrates superior performance in knowledge-based tasks and tool-use tasks. However, it still exhibits certain limitations in areas such as multi-turn dialogues and instruction following.
Abstract:Although Large Language Models (LLMs) exhibit remarkable adaptability across domains, these models often fall short in structured knowledge extraction tasks such as named entity recognition (NER). This paper explores an innovative, cost-efficient strategy to harness LLMs with modest NER capabilities for producing superior NER datasets. Our approach diverges from the basic class-conditional prompts by instructing LLMs to self-reflect on the specific domain, thereby generating domain-relevant attributes (such as category and emotions for movie reviews), which are utilized for creating attribute-rich training data. Furthermore, we preemptively generate entity terms and then develop NER context data around these entities, effectively bypassing the LLMs' challenges with complex structures. Our experiments across both general and niche domains reveal significant performance enhancements over conventional data generation methods while being more cost-effective than existing alternatives.
Abstract:Large language models (LLMs) have demonstrated impressive abilities in generating unstructured natural language according to instructions. However, their performance can be inconsistent when tasked with producing text that adheres to specific structured formats, which is crucial in applications like named entity recognition (NER) or relation extraction (RE). To address this issue, this paper introduces an efficient method, G&O, to enhance their structured text generation capabilities. It breaks the generation into a two-step pipeline: initially, LLMs generate answers in natural language as intermediate responses. Subsequently, LLMs are asked to organize the output into the desired structure, using the intermediate responses as context. G&O effectively separates the generation of content from the structuring process, reducing the pressure of completing two orthogonal tasks simultaneously. Tested on zero-shot NER and RE, the results indicate a significant improvement in LLM performance with minimal additional efforts. This straightforward and adaptable prompting technique can also be combined with other strategies, like self-consistency, to further elevate LLM capabilities in various structured text generation tasks.
Abstract:Large Language Models (LLMs) have recently showcased remarkable reasoning abilities. However, larger models often surpass their smaller counterparts in reasoning tasks, posing the challenge of effectively transferring these capabilities from larger models. Existing approaches heavily rely on extensive fine-tuning data or continuous interactions with a superior teacher LLM during inference. We introduce a principle-based teacher-student framework called ``Teaching via Principle Discovery'' (TPD) to address these limitations. Inspired by human learning mechanisms, TPD mimics the interaction between a teacher and a student using a principle-based approach. The teacher LLM generates problem-solving instructions and corrective principles based on the student LLM's errors. These principles guide the refinement of instructions and the selection of instructive examples from a validation set. This enables the student model to learn from both the teacher's guidance and its own mistakes. Once the student model begins making inferences, TPD requires no further intervention from the teacher LLM or humans. Through extensive experiments across eight reasoning tasks, we demonstrate the effectiveness of TPD. Compared to standard chain-of-thought prompting, TPD significantly improves the student model's performance, achieving $6.2\%$ improvement on average.
Abstract:Text style is highly abstract, as it encompasses various aspects of a speaker's characteristics, habits, logical thinking, and the content they express. However, previous text-style transfer tasks have primarily focused on data-driven approaches, lacking in-depth analysis and research from the perspectives of linguistics and cognitive science. In this paper, we introduce a novel task called Text Speech-Style Transfer (TSST). The main objective is to further explore topics related to human cognition, such as personality and emotion, based on the capabilities of existing LLMs. Considering the objective of our task and the distinctive characteristics of oral speech in real-life scenarios, we trained multi-dimension (i.e. filler words, vividness, interactivity, emotionality) evaluation models for the TSST and validated their correlation with human assessments. We thoroughly analyze the performance of several large language models (LLMs) and identify areas where further improvement is needed. Moreover, driven by our evaluation models, we have released a new corpus that improves the capabilities of LLMs in generating text with speech-style characteristics. In summary, we present the TSST task, a new benchmark for style transfer and emphasizing human-oriented evaluation, exploring and advancing the performance of current LLMs.
Abstract:Scientific information extraction (SciIE), which aims to automatically extract information from scientific literature, is becoming more important than ever. However, there are no existing SciIE datasets for polymer materials, which is an important class of materials used ubiquitously in our daily lives. To bridge this gap, we introduce POLYIE, a new SciIE dataset for polymer materials. POLYIE is curated from 146 full-length polymer scholarly articles, which are annotated with different named entities (i.e., materials, properties, values, conditions) as well as their N-ary relations by domain experts. POLYIE presents several unique challenges due to diverse lexical formats of entities, ambiguity between entities, and variable-length relations. We evaluate state-of-the-art named entity extraction and relation extraction models on POLYIE, analyze their strengths and weaknesses, and highlight some difficult cases for these models. To the best of our knowledge, POLYIE is the first SciIE benchmark for polymer materials, and we hope it will lead to more research efforts from the community on this challenging task. Our code and data are available on: https://github.com/jerry3027/PolyIE.
Abstract:Large Language Models (LLMs) have shown remarkable proficiency in language understanding and have been successfully applied to a variety of real-world tasks through task-specific fine-tuning or prompt engineering. Despite these advancements, it remains an open question whether LLMs are fundamentally capable of reasoning and planning, or if they primarily rely on recalling and synthesizing information from their training data. In our research, we introduce a novel task -- Minesweeper -- specifically designed in a format unfamiliar to LLMs and absent from their training datasets. This task challenges LLMs to identify the locations of mines based on numerical clues provided by adjacent opened cells. Successfully completing this task requires an understanding of each cell's state, discerning spatial relationships between the clues and mines, and strategizing actions based on logical deductions drawn from the arrangement of the cells. Our experiments, including trials with the advanced GPT-4 model, indicate that while LLMs possess the foundational abilities required for this task, they struggle to integrate these into a coherent, multi-step logical reasoning process needed to solve Minesweeper. These findings highlight the need for further research to understand and nature of reasoning capabilities in LLMs under similar circumstances, and to explore pathways towards more sophisticated AI reasoning and planning models.
Abstract:Large Language Models (LLMs) have demonstrated remarkable performance across various natural language tasks, marking significant strides towards general artificial intelligence. While general artificial intelligence is leveraged by developing increasingly large-scale models, there could be another branch to develop lightweight custom models that better serve certain domains, taking into account the high cost of training and deploying LLMs and the scarcity of resources. In this paper, we present MindLLM, a novel series of bilingual lightweight large language models, trained from scratch, alleviating such burdens by offering models with 1.3 billion and 3 billion parameters. A thorough account of experiences accrued during large model development is given, covering every step of the process, including data construction, model architecture, evaluation, and applications. Such insights are hopefully valuable for fellow academics and developers. MindLLM consistently matches or surpasses the performance of other open-source larger models on some public benchmarks. We also introduce an innovative instruction tuning framework tailored for smaller models to enhance their capabilities efficiently. Moreover, we explore the application of MindLLM in specific vertical domains such as law and finance, underscoring the agility and adaptability of our lightweight models.
Abstract:Large Transformer models pre-trained on massive unlabeled molecular data have shown great success in predicting molecular properties. However, these models can be prone to overfitting during fine-tuning, resulting in over-confident predictions on test data that fall outside of the training distribution. To address this issue, uncertainty quantification (UQ) methods can be used to improve the models' calibration of predictions. Although many UQ approaches exist, not all of them lead to improved performance. While some studies have used UQ to improve molecular pre-trained models, the process of selecting suitable backbone and UQ methods for reliable molecular uncertainty estimation remains underexplored. To address this gap, we present MUBen, which evaluates different combinations of backbone and UQ models to quantify their performance for both property prediction and uncertainty estimation. By fine-tuning various backbone molecular representation models using different molecular descriptors as inputs with UQ methods from different categories, we critically assess the influence of architectural decisions and training strategies. Our study offers insights for selecting UQ and backbone models, which can facilitate research on uncertainty-critical applications in fields such as materials science and drug discovery.