Abstract:In recent years, Large Language Models (LLMs) have achieved remarkable advancements, drawing significant attention from the research community. Their capabilities are largely attributed to large-scale architectures, which require extensive training on massive datasets. However, such datasets often contain sensitive or copyrighted content sourced from the public internet, raising concerns about data privacy and ownership. Regulatory frameworks, such as the General Data Protection Regulation (GDPR), grant individuals the right to request the removal of such sensitive information. This has motivated the development of machine unlearning algorithms that aim to remove specific knowledge from models without the need for costly retraining. Despite these advancements, evaluating the efficacy of unlearning algorithms remains a challenge due to the inherent complexity and generative nature of LLMs. In this work, we introduce a comprehensive auditing framework for unlearning evaluation, comprising three benchmark datasets, six unlearning algorithms, and five prompt-based auditing methods. By using various auditing algorithms, we evaluate the effectiveness and robustness of different unlearning strategies. To explore alternatives beyond prompt-based auditing, we propose a novel technique that leverages intermediate activation perturbations, addressing the limitations of auditing methods that rely solely on model inputs and outputs.
Abstract:Social bias is a critical issue in large vision-language models (VLMs), where fairness- and ethics-related problems harm certain groups of people in society. It is unknown to what extent VLMs yield social bias in generative responses. In this study, we focus on evaluating and mitigating social bias on both the model's response and probability distribution. To do so, we first evaluate four state-of-the-art VLMs on PAIRS and SocialCounterfactuals datasets with the multiple-choice selection task. Surprisingly, we find that models suffer from generating gender-biased or race-biased responses. We also observe that models are prone to stating their responses are fair, but indeed having mis-calibrated confidence levels towards particular social groups. While investigating why VLMs are unfair in this study, we observe that VLMs' hidden layers exhibit substantial fluctuations in fairness levels. Meanwhile, residuals in each layer show mixed effects on fairness, with some contributing positively while some lead to increased bias. Based on these findings, we propose a post-hoc method for the inference stage to mitigate social bias, which is training-free and model-agnostic. We achieve this by ablating bias-associated residuals while amplifying fairness-associated residuals on model hidden layers during inference. We demonstrate that our post-hoc method outperforms the competing training strategies, helping VLMs have fairer responses and more reliable confidence levels.