Abstract:This paper addresses the challenge of energy-constrained maritime monitoring networks by proposing an unmanned aerial vehicle (UAV)-enabled integrated sensing, communication, powering and backhaul transmission scheme with a tailored time-division duplex frame structure. Within each time slot, the UAV sequentially implements sensing, wireless charging and uplink receiving with buoys, and lastly forwards part of collected data to the central ship via backhaul links. Considering the tight coupling among these functions, we jointly optimize time allocation, UAV trajectory, UAV-buoy association, and power scheduling to maximize the performance of data collection, with the practical consideration of sea clutter effects during UAV sensing. A novel optimization framework combining alternating optimization, quadratic transform and augmented first-order Taylor approximation is developed, which demonstrates good convergence behavior and robustness. Simulation results show that under sensing quality-of-service constraint, buoys are able to achieve an average data rate over 22bps/Hz using around 2mW harvested power per active time slot, validating the scheme's effectiveness for open-sea monitoring. Additionally, it is found that under the influence of sea clutters, the optimal UAV trajectory always keeps a certain distance with buoys to strike a balance between sensing and other multi-functional transmissions.
Abstract:Sentence simplification reduces semantic complexity to benefit people with language impairments. Previous simplification studies on the sentence level and word level have achieved promising results but also meet great challenges. For sentence-level studies, sentences after simplification are fluent but sometimes are not really simplified. For word-level studies, words are simplified but also have potential grammar errors due to different usages of words before and after simplification. In this paper, we propose a two-step simplification framework by combining both the word-level and the sentence-level simplifications, making use of their corresponding advantages. Based on the two-step framework, we implement a novel constrained neural generation model to simplify sentences given simplified words. The final results on Wikipedia and Simple Wikipedia aligned datasets indicate that our method yields better performance than various baselines.