Abstract:Complementary recommendation gains increasing attention in e-commerce since it expedites the process of finding frequently-bought-with products for users in their shopping journey. Therefore, learning the product representation that can reflect this complementary relationship plays a central role in modern recommender systems. In this work, we propose a logical reasoning network, LOGIREC, to effectively learn embeddings of products as well as various transformations (projection, intersection, negation) between them. LOGIREC is capable of capturing the asymmetric complementary relationship between products and seamlessly extending to high-order recommendations where more comprehensive and meaningful complementary relationship is learned for a query set of products. Finally, we further propose a hybrid network that is jointly optimized for learning a more generic product representation. We demonstrate the effectiveness of our LOGIREC on multiple public real-world datasets in terms of various ranking-based metrics under both low-order and high-order recommendation scenarios.
Abstract:The packet loss problem seriously affects the quality of service in Voice over IP (VoIP) sceneries. In this paper, we investigated online receiver-based packet loss concealment which is much more portable and applicable. For ensuring the speech naturalness, rather than directly processing time-domain waveforms or separately reconstructing amplitudes and phases in frequency domain, a flow-based neural vocoder is adopted to generate the substitution waveform of lost packet from Mel-spectrogram which is generated from history contents by a well-designed neural predictor. Furthermore, a waveform similarity-based smoothing post-process is created to mitigate the discontinuity of speech and avoid the artifacts. The experimental results show the outstanding performance of the proposed method.
Abstract:With the prevalence of deep learning based embedding approaches, recommender systems have become a proven and indispensable tool in various information filtering applications. However, many of them remain difficult to diagnose what aspects of the deep models' input drive the final ranking decision, thus, they cannot often be understood by human stakeholders. In this paper, we investigate the dilemma between recommendation and explainability, and show that by utilizing the contextual features (e.g., item reviews from users), we can design a series of explainable recommender systems without sacrificing their performance. In particular, we propose three types of explainable recommendation strategies with gradual change of model transparency: whitebox, graybox, and blackbox. Each strategy explains its ranking decisions via different mechanisms: attention weights, adversarial perturbations, and counterfactual perturbations. We apply these explainable models on five real-world data sets under the contextualized setting where users and items have explicit interactions. The empirical results show that our model achieves highly competitive ranking performance, and generates accurate and effective explanations in terms of numerous quantitative metrics and qualitative visualizations.
Abstract:Recommender systems are popular tools for information retrieval tasks on a large variety of web applications and personalized products. In this work, we propose a Generative Adversarial Network based recommendation framework using a positive-unlabeled sampling strategy. Specifically, we utilize the generator to learn the continuous distribution of user-item tuples and design the discriminator to be a binary classifier that outputs the relevance score between each user and each item. Meanwhile, positive-unlabeled sampling is applied in the learning procedure of the discriminator. Theoretical bounds regarding positive-unlabeled sampling and optimalities of convergence for the discriminators and the generators are provided. We show the effectiveness and efficiency of our framework on three publicly accessible data sets with eight ranking-based evaluation metrics in comparison with thirteen popular baselines.
Abstract:In decentralized learning, data is distributed among local clients which collaboratively train a shared prediction model using secure aggregation. To preserve the privacy of the clients, modern decentralized learning paradigms require each client to maintain a private local training data set and only upload their summarized model updates to the server. However, this can quickly lead to a degenerate model and collapse in performance when corrupted updates (e.g., adversarial manipulations) are aggregated at the server. In this work, we present a robust decentralized learning framework, Decent_BVA, using bias-variance based adversarial training via asymmetrical communications between each client and the server. The experiments are conducted on neural networks with cross-entropy loss. Nevertheless, the proposed framework allows the use of various classification loss functions (e.g., cross-entropy loss, mean squared error loss) where the gradients of the bias and variance are tractable to be estimated from local clients' models. In this case, any gradient-based adversarial training strategies could be used by taking the bias-variance oriented adversarial examples into consideration, e.g., bias-variance based FGSM and PGD proposed in this paper. Experiments show that Decent_BVA is robust to the classical adversarial attacks when the level of corruption is high while being competitive compared with conventional decentralized learning in terms of the model's accuracy and efficiency.
Abstract:We present a visual localization framework aided by novel deep attention aware features for autonomous driving that achieves centimeter level localization accuracy. Conventional approaches to the visual localization problem rely on handcrafted features or human-made objects on the road. They are known to be either prone to unstable matching caused by severe appearance or lighting changes, or too scarce to deliver constant and robust localization results in challenging scenarios. In this work, we seek to exploit the deep attention mechanism to search for salient, distinctive and stable features that are good for long-term matching in the scene through a novel end-to-end deep neural network. Furthermore, our learned feature descriptors are demonstrated to be competent to establish robust matches and therefore successfully estimate the optimal camera poses with high precision. We comprehensively validate the effectiveness of our method using a freshly collected dataset with high-quality ground truth trajectories and hardware synchronization between sensors. Results demonstrate that our method achieves a competitive localization accuracy when compared to the LiDAR-based localization solutions under various challenging circumstances, leading to a potential low-cost localization solution for autonomous driving.
Abstract:3D CNN shows its strong ability in learning spatiotemporal representation in recent video recognition tasks. However, inflating 2D convolution to 3D inevitably introduces additional computational costs, making it cumbersome in practical deployment. We consider whether there is a way to equip the conventional 2D convolution with temporal vision no requiring expanding its kernel. To this end, we propose the video shuffle, a parameter-free plug-in component that efficiently reallocates the inputs of 2D convolution so that its receptive field can be extended to the temporal dimension. In practical, video shuffle firstly divides each frame feature into multiple groups and then aggregate the grouped features via temporal shuffle operation. This allows the following 2D convolution aggregate the global spatiotemporal features. The proposed video shuffle can be flexibly inserted into popular 2D CNNs, forming the Video Shuffle Networks (VSN). With a simple yet efficient implementation, VSN performs surprisingly well on temporal modeling benchmarks. In experiments, VSN not only gains non-trivial improvements on Kinetics and Moments in Time, but also achieves state-of-the-art performance on Something-Something-V1, Something-Something-V2 datasets.
Abstract:We present DeepICP - a novel end-to-end learning-based 3D point cloud registration framework that achieves comparable registration accuracy to prior state-of-the-art geometric methods. Different from other keypoint based methods where a RANSAC procedure is usually needed, we implement the use of various deep neural network structures to establish an end-to-end trainable network. Our keypoint detector is trained through this end-to-end structure and enables the system to avoid the inference of dynamic objects, leverages the help of sufficiently salient features on stationary objects, and as a result, achieves high robustness. Rather than searching the corresponding points among existing points, the key contribution is that we innovatively generate them based on learned matching probabilities among a group of candidates, which can boost the registration accuracy. Our loss function incorporates both the local similarity and the global geometric constraints to ensure all above network designs can converge towards the right direction. We comprehensively validate the effectiveness of our approach using both the KITTI dataset and the Apollo-SouthBay dataset. Results demonstrate that our method achieves comparable or better performance than the state-of-the-art geometry-based methods. Detailed ablation and visualization analysis are included to further illustrate the behavior and insights of our network. The low registration error and high robustness of our method makes it attractive for substantial applications relying on the point cloud registration task.
Abstract:The unprecedented demand for large amount of data has catalyzed the trend of combining human insights with machine learning techniques, which facilitate the use of crowdsourcing to enlist label information both effectively and efficiently. The classic work on crowdsourcing mainly focuses on the label inference problem under the categorization setting. However, inferring the true label requires sophisticated aggregation models that usually can only perform well under certain assumptions. Meanwhile, no matter how complicated the aggregation model is, the true model that generated the crowd labels remains unknown. Therefore, the label inference problem can never infer the ground truth perfectly. Based on the fact that the crowdsourcing labels are abundant and utilizing aggregation will lose such kind of rich annotation information (e.g., which worker provided which labels), we believe that it is critical to take the diverse labeling abilities of the crowdsourcing workers as well as their correlations into consideration. To address the above challenge, we propose to tackle three research problems, namely inference, learning, and teaching.
Abstract:With the increasing demand for large amount of labeled data, crowdsourcing has been used in many large-scale data mining applications. However, most existing works in crowdsourcing mainly focus on label inference and incentive design. In this paper, we address a different problem of adaptive crowd teaching, which is a sub-area of machine teaching in the context of crowdsourcing. Compared with machines, human beings are extremely good at learning a specific target concept (e.g., classifying the images into given categories) and they can also easily transfer the learned concepts into similar learning tasks. Therefore, a more effective way of utilizing crowdsourcing is by supervising the crowd to label in the form of teaching. In order to perform the teaching and expertise estimation simultaneously, we propose an adaptive teaching framework named JEDI to construct the personalized optimal teaching set for the crowdsourcing workers. In JEDI teaching, the teacher assumes that each learner has an exponentially decayed memory. Furthermore, it ensures comprehensiveness in the learning process by carefully balancing teaching diversity and learner's accurate learning in terms of teaching usefulness. Finally, we validate the effectiveness and efficacy of JEDI teaching in comparison with the state-of-the-art techniques on multiple data sets with both synthetic learners and real crowdsourcing workers.