Abstract:In this paper, we propose a novel drift-adaptive slicing-based resource management scheme for cooperative integrated sensing and communication (ISAC) networks. Particularly, we establish two network slices to provide sensing and communication services, respectively. In the large-timescale planning for the slices, we partition the sensing region of interest (RoI) of each mobile device and reserve network resources accordingly, facilitating low-complexity distance-based sensing target assignment in small timescales. To cope with the non-stationary spatial distributions of mobile devices and sensing targets, which can result in the drift in modeling the distributions and ineffective planning decisions, we construct digital twins (DTs) of the slices. In each DT, a drift-adaptive statistical model and an emulation function are developed for the spatial distributions in the corresponding slice, which facilitates closed-form decision-making and efficient validation of a planning decision, respectively. Numerical results show that the proposed drift-adaptive slicing-based resource management scheme can increase the service satisfaction ratio by up to 18% and reduce resource consumption by up to 13.1% when compared with benchmark schemes.
Abstract:In high-risk railway construction, personal protective equipment monitoring is critical but challenging due to small and frequently obstructed targets. We propose YOLO-EA, an innovative model that enhances safety measure detection by integrating ECA into its backbone's convolutional layers, improving discernment of minuscule objects like hardhats. YOLO-EA further refines target recognition under occlusion by replacing GIoU with EIoU loss. YOLO-EA's effectiveness was empirically substantiated using a dataset derived from real-world railway construction site surveillance footage. It outperforms YOLOv5, achieving 98.9% precision and 94.7% recall, up 2.5% and 0.5% respectively, while maintaining real-time performance at 70.774 fps. This highly efficient and precise YOLO-EA holds great promise for practical application in intricate construction scenarios, enforcing stringent safety compliance during complex railway construction projects.
Abstract:Image research has shown substantial attention in deblurring networks in recent years. Yet, their practical usage in real-world deblurring, especially motion blur, remains limited due to the lack of pixel-aligned training triplets (background, blurred image, and blur heat map) and restricted information inherent in blurred images. This paper presents a simple yet efficient framework to synthetic and restore motion blur images using Inertial Measurement Unit (IMU) data. Notably, the framework includes a strategy for training triplet generation, and a Gyroscope-Aided Motion Deblurring (GAMD) network for blurred image restoration. The rationale is that through harnessing IMU data, we can determine the transformation of the camera pose during the image exposure phase, facilitating the deduction of the motion trajectory (aka. blur trajectory) for each point inside the three-dimensional space. Thus, the synthetic triplets using our strategy are inherently close to natural motion blur, strictly pixel-aligned, and mass-producible. Through comprehensive experiments, we demonstrate the advantages of the proposed framework: only two-pixel errors between our synthetic and real-world blur trajectories, a marked improvement (around 33.17%) of the state-of-the-art deblurring method MIMO on Peak Signal-to-Noise Ratio (PSNR).