Abstract:Recent advances in digital watermarking make use of deep neural networks for message embedding and extraction. They typically follow the ``encoder-noise layer-decoder''-based architecture. By deliberately establishing a differentiable noise layer to simulate the distortion of the watermarked signal, they jointly train the deep encoder and decoder to fit the noise layer to guarantee robustness. As a result, they are usually weak against unknown distortions that are not used in their training pipeline. In this paper, we propose a novel watermarking framework to resist unknown distortions, namely Adversarial Shallow Watermarking (ASW). ASW utilizes only a shallow decoder that is randomly parameterized and designed to be insensitive to distortions for watermarking extraction. During the watermark embedding, ASW freezes the shallow decoder and adversarially optimizes a host image until its updated version (i.e., the watermarked image) stably triggers the shallow decoder to output the watermark message. During the watermark extraction, it accurately recovers the message from the watermarked image by leveraging the insensitive nature of the shallow decoder against arbitrary distortions. Our ASW is training-free, encoder-free, and noise layer-free. Experiments indicate that the watermarked images created by ASW have strong robustness against various unknown distortions. Compared to the existing ``encoder-noise layer-decoder'' approaches, ASW achieves comparable results on known distortions and better robustness on unknown distortions.
Abstract:Digital watermarking has demonstrated its effectiveness in protecting multimedia content. However, existing watermarking are predominantly tailored for specific media types, rendering them less effective for the protection of content displayed on computer screens, which is often multimodal and dynamic. Visual Screen Content (VSC), is particularly susceptible to theft and leakage via screenshots, a vulnerability that current watermarking methods fail to adequately address.To tackle these challenges, we propose ScreenMark, a robust and practical watermarking method designed specifically for arbitrary VSC protection. ScreenMark utilizes a three-stage progressive watermarking framework. Initially, inspired by diffusion principles, we initialize the mutual transformation between regular watermark information and irregular watermark patterns. Subsequently, these patterns are integrated with screen content using a pre-multiplication alpha blending technique, supported by a pre-trained screen decoder for accurate watermark retrieval. The progressively complex distorter enhances the robustness of the watermark in real-world screenshot scenarios. Finally, the model undergoes fine-tuning guided by a joint-level distorter to ensure optimal performance.To validate the effectiveness of ScreenMark, we compiled a dataset comprising 100,000 screenshots from various devices and resolutions. Extensive experiments across different datasets confirm the method's superior robustness, imperceptibility, and practical applicability.