Imbalanced token distributions naturally exist in text documents, leading neural language models to overfit on frequent tokens. The token imbalance may dampen the robustness of radiology report generators, as complex medical terms appear less frequently but reflect more medical information. In this study, we demonstrate how current state-of-the-art models fail to generate infrequent tokens on two standard benchmark datasets (IU X-RAY and MIMIC-CXR) of radiology report generation. % However, no prior study has proposed methods to adapt infrequent tokens for text generators feeding with medical images. To solve the challenge, we propose the \textbf{T}oken \textbf{Im}balance Adapt\textbf{er} (\textit{TIMER}), aiming to improve generation robustness on infrequent tokens. The model automatically leverages token imbalance by an unlikelihood loss and dynamically optimizes generation processes to augment infrequent tokens. We compare our approach with multiple state-of-the-art methods on the two benchmarks. Experiments demonstrate the effectiveness of our approach in enhancing model robustness overall and infrequent tokens. Our ablation analysis shows that our reinforcement learning method has a major effect in adapting token imbalance for radiology report generation.
General movement assessment (GMA) of infant movement videos (IMVs) is an effective method for early detection of cerebral palsy (CP) in infants. We demonstrate in this paper that end-to-end trainable neural networks for image sequence recognition can be applied to achieve good results in GMA, and more importantly, augmenting raw video with infant body parsing and pose estimation information can significantly improve performance. To solve the problem of efficiently utilizing partially labeled IMVs for body parsing, we propose a semi-supervised model, termed SiamParseNet (SPN), which consists of two branches, one for intra-frame body parts segmentation and another for inter-frame label propagation. During training, the two branches are jointly trained by alternating between using input pairs of only labeled frames and input of both labeled and unlabeled frames. We also investigate training data augmentation by proposing a factorized video generative adversarial network (FVGAN) to synthesize novel labeled frames for training. When testing, we employ a multi-source inference mechanism, where the final result for a test frame is either obtained via the segmentation branch or via propagation from a nearby key frame. We conduct extensive experiments for body parsing using SPN on two infant movement video datasets, where SPN coupled with FVGAN achieves state-of-the-art performance. We further demonstrate that SPN can be easily adapted to the infant pose estimation task with superior performance. Last but not least, we explore the clinical application of our method for GMA. We collected a new clinical IMV dataset with GMA annotations, and our experiments show that SPN models for body parsing and pose estimation trained on the first two datasets generalize well to the new clinical dataset and their results can significantly boost the CRNN-based GMA prediction performance.
The automatic generation of floorplans given user inputs has great potential in architectural design and has recently been explored in the computer vision community. However, the majority of existing methods synthesize floorplans in the format of rasterized images, which are difficult to edit or customize. In this paper, we aim to synthesize floorplans as sequences of 1-D vectors, which eases user interaction and design customization. To generate high fidelity vectorized floorplans, we propose a novel two-stage framework, including a draft stage and a multi-round refining stage. In the first stage, we encode the room connectivity graph input by users with a graph convolutional network (GCN), then apply an autoregressive transformer network to generate an initial floorplan sequence. To polish the initial design and generate more visually appealing floorplans, we further propose a novel panoptic refinement network(PRN) composed of a GCN and a transformer network. The PRN takes the initial generated sequence as input and refines the floorplan design while encouraging the correct room connectivity with our proposed geometric loss. We have conducted extensive experiments on a real-world floorplan dataset, and the results show that our method achieves state-of-the-art performance under different settings and evaluation metrics.
Accurate infarct segmentation in non-contrast CT (NCCT) images is a crucial step toward computer-aided acute ischemic stroke (AIS) assessment. In clinical practice, bilateral symmetric comparison of brain hemispheres is usually used to locate pathological abnormalities. Recent research has explored asymmetries to assist with AIS segmentation. However, most previous symmetry-based work mixed different types of asymmetries when evaluating their contribution to AIS. In this paper, we propose a novel Asymmetry Disentanglement Network (ADN) to automatically separate pathological asymmetries and intrinsic anatomical asymmetries in NCCTs for more effective and interpretable AIS segmentation. ADN first performs asymmetry disentanglement based on input NCCTs, which produces different types of 3D asymmetry maps. Then a synthetic, intrinsic-asymmetry-compensated and pathology-asymmetry-salient NCCT volume is generated and later used as input to a segmentation network. The training of ADN incorporates domain knowledge and adopts a tissue-type aware regularization loss function to encourage clinically-meaningful pathological asymmetry extraction. Coupled with an unsupervised 3D transformation network, ADN achieves state-of-the-art AIS segmentation performance on a public NCCT dataset. In addition to the superior performance, we believe the learned clinically-interpretable asymmetry maps can also provide insights towards a better understanding of AIS assessment. Our code is available at https://github.com/nihaomiao/MICCAI22_ADN.
We present a new encoder-decoder Vision Transformer architecture, Patcher, for medical image segmentation. Unlike standard Vision Transformers, it employs Patcher blocks that segment an image into large patches, each of which is further divided into small patches. Transformers are applied to the small patches within a large patch, which constrains the receptive field of each pixel. We intentionally make the large patches overlap to enhance intra-patch communication. The encoder employs a cascade of Patcher blocks with increasing receptive fields to extract features from local to global levels. This design allows Patcher to benefit from both the coarse-to-fine feature extraction common in CNNs and the superior spatial relationship modeling of Transformers. We also propose a new mixture-of-experts (MoE) based decoder, which treats the feature maps from the encoder as experts and selects a suitable set of expert features to predict the label for each pixel. The use of MoE enables better specializations of the expert features and reduces interference between them during inference. Extensive experiments demonstrate that Patcher outperforms state-of-the-art Transformer- and CNN-based approaches significantly on stroke lesion segmentation and polyp segmentation. Code for Patcher will be released with publication to facilitate future research.
Class imbalance naturally exists when train and test models in different domains. Unsupervised domain adaptation (UDA) augments model performance with only accessible annotations from the source domain and unlabeled data from the target domain. However, existing state-of-the-art UDA models learn domain-invariant representations and evaluate primarily on class-balanced data across domains. In this work, we propose an unsupervised domain adaptation approach via reinforcement learning that jointly leverages feature variants and imbalanced labels across domains. We experiment with the text classification task for its easily accessible datasets and compare the proposed method with five baselines. Experiments on three datasets prove that our proposed method can effectively learn robust domain-invariant representations and successfully adapt text classifiers on imbalanced classes over domains. The code is available at https://github.com/woqingdoua/ImbalanceClass.
Classifying moral values in user-generated text from social media is critical in understanding community cultures and interpreting user behaviors of social movements. Moral values and language usage can change across the social movements; however, text classifiers are usually trained in source domains of existing social movements and tested in target domains of new social issues without considering the variations. In this study, we examine domain shifts of moral values and language usage, quantify the effects of domain shifts on the morality classification task, and propose a neural adaptation framework via instance weighting to improve cross-domain classification tasks. The quantification analysis suggests a strong correlation between morality shifts, language usage, and classification performance. We evaluate the neural adaptation framework on a public Twitter data across 7 social movements and gain classification improvements up to 12.1\%. Finally, we release a new data of the COVID-19 vaccine labeled with moral values and evaluate our approach on the new target domain. For the case study of the COVID-19 vaccine, our adaptation framework achieves up to 5.26\% improvements over neural baselines.
Existing approaches to mitigate demographic biases evaluate on monolingual data, however, multilingual data has not been examined. In this work, we treat the gender as domains (e.g., male vs. female) and present a standard domain adaptation model to reduce the gender bias and improve performance of text classifiers under multilingual settings. We evaluate our approach on two text classification tasks, hate speech detection and rating prediction, and demonstrate the effectiveness of our approach with three fair-aware baselines.
Clinical notes in Electronic Health Records (EHR) present rich documented information of patients to inference phenotype for disease diagnosis and study patient characteristics for cohort selection. Unsupervised user embedding aims to encode patients into fixed-length vectors without human supervisions. Medical concepts extracted from the clinical notes contain rich connections between patients and their clinical categories. However, existing unsupervised approaches of user embeddings from clinical notes do not explicitly incorporate medical concepts. In this study, we propose a concept-aware unsupervised user embedding that jointly leverages text documents and medical concepts from two clinical corpora, MIMIC-III and Diabetes. We evaluate user embeddings on both extrinsic and intrinsic tasks, including phenotype classification, in-hospital mortality prediction, patient retrieval, and patient relatedness. Experiments on the two clinical corpora show our approach exceeds unsupervised baselines, and incorporating medical concepts can significantly improve the baseline performance.
We present a novel framework named PlaneMVS for 3D plane reconstruction from multiple input views with known camera poses. Most previous learning-based plane reconstruction methods reconstruct 3D planes from single images, which highly rely on single-view regression and suffer from depth scale ambiguity. In contrast, we reconstruct 3D planes with a multi-view-stereo (MVS) pipeline that takes advantage of multi-view geometry. We decouple plane reconstruction into a semantic plane detection branch and a plane MVS branch. The semantic plane detection branch is based on a single-view plane detection framework but with differences. The plane MVS branch adopts a set of slanted plane hypotheses to replace conventional depth hypotheses to perform plane sweeping strategy and finally learns pixel-level plane parameters and its planar depth map. We present how the two branches are learned in a balanced way, and propose a soft-pooling loss to associate the outputs of the two branches and make them benefit from each other. Extensive experiments on various indoor datasets show that PlaneMVS significantly outperforms state-of-the-art (SOTA) single-view plane reconstruction methods on both plane detection and 3D geometry metrics. Our method even outperforms a set of SOTA learning-based MVS methods thanks to the learned plane priors. To the best of our knowledge, this is the first work on 3D plane reconstruction within an end-to-end MVS framework.