Abstract:We propose Spatial-Aware Correlated Multiple Instance Learning (SAC-MIL) for performing WSI classification. SAC-MIL consists of a positional encoding module to encode position information and a SAC block to perform full instance correlations. The positional encoding module utilizes the instance coordinates within the slide to encode the spatial relationships instead of the instance index in the input WSI sequence. The positional encoding module can also handle the length extrapolation issue where the training and testing sequences have different lengths. The SAC block is an MLP-based method that performs full instance correlation in linear time complexity with respect to the sequence length. Due to the simple structure of MLP, it is easy to deploy since it does not require custom CUDA kernels, compared to Transformer-based methods for WSI classification. SAC-MIL has achieved state-of-the-art performance on the CAMELYON-16, TCGA-LUNG, and TCGA-BRAC datasets. The code will be released upon acceptance.
Abstract:In response to Distributed Denial of Service (DDoS) attacks, recent research efforts increasingly rely on Machine Learning (ML)-based solutions, whose effectiveness largely depends on the quality of labeled training datasets. To address the scarcity of such datasets, data augmentation with synthetic traces is often employed. However, current synthetic trace generation methods struggle to capture the complex temporal patterns and spatial distributions exhibited in emerging DDoS attacks. This results in insufficient resemblance to real traces and unsatisfied detection accuracy when applied to ML tasks. In this paper, we propose Dual-Stream Temporal-Field Diffusion (DSTF-Diffusion), a multi-view, multi-stream network traffic generative model based on diffusion models, featuring two main streams: The field stream utilizes spatial mapping to bridge network data characteristics with pre-trained realms of stable diffusion models, effectively translating complex network interactions into formats that stable diffusion can process, while the spatial stream adopts a dynamic temporal modeling approach, meticulously capturing the intrinsic temporal patterns of network traffic. Extensive experiments demonstrate that data generated by our model exhibits higher statistical similarity to originals compared to current state-of-the-art solutions, and enhance performances on a wide range of downstream tasks.




Abstract:Transformer models have achieved promising performances in point cloud segmentation. However, most existing attention schemes provide the same feature learning paradigm for all points equally and overlook the enormous difference in size among scene objects. In this paper, we propose the Size-Aware Transformer (SAT) that can tailor effective receptive fields for objects of different sizes. Our SAT achieves size-aware learning via two steps: introduce multi-scale features to each attention layer and allow each point to choose its attentive fields adaptively. It contains two key designs: the Multi-Granularity Attention (MGA) scheme and the Re-Attention module. The MGA addresses two challenges: efficiently aggregating tokens from distant areas and preserving multi-scale features within one attention layer. Specifically, point-voxel cross attention is proposed to address the first challenge, and the shunted strategy based on the standard multi-head self attention is applied to solve the second. The Re-Attention module dynamically adjusts the attention scores to the fine- and coarse-grained features output by MGA for each point. Extensive experimental results demonstrate that SAT achieves state-of-the-art performances on S3DIS and ScanNetV2 datasets. Our SAT also achieves the most balanced performance on categories among all referred methods, which illustrates the superiority of modelling categories of different sizes. Our code and model will be released after the acceptance of this paper.