Abstract:Ambient sensor-based human activity recognition (HAR) in smart homes remains challenging due to the need for real-time inference, spatially grounded reasoning, and context-aware temporal modeling. Existing approaches often rely on pre-segmented, within-activity data and overlook the physical layout of the environment, limiting their robustness in continuous, real-world deployments. In this paper, we propose MARAuder's Map, a novel framework for real-time activity recognition from raw, unsegmented sensor streams. Our method projects sensor activations onto the physical floorplan to generate trajectory-aware, image-like sequences that capture the spatial flow of human movement. These representations are processed by a hybrid deep learning model that jointly captures spatial structure and temporal dependencies. To enhance temporal awareness, we introduce a learnable time embedding module that encodes contextual cues such as hour-of-day and day-of-week. Additionally, an attention-based encoder selectively focuses on informative segments within each observation window, enabling accurate recognition even under cross-activity transitions and temporal ambiguity. Extensive experiments on multiple real-world smart home datasets demonstrate that our method outperforms strong baselines, offering a practical solution for real-time HAR in ambient sensor environments.
Abstract:Real world collection of Activities of Daily Living data is challenging due to privacy concerns, costly deployment and labeling, and the inherent sparsity and imbalance of human behavior. We present ADLGen, a generative framework specifically designed to synthesize realistic, event triggered, and symbolic sensor sequences for ambient assistive environments. ADLGen integrates a decoder only Transformer with sign based symbolic temporal encoding, and a context and layout aware sampling mechanism to guide generation toward semantically rich and physically plausible sensor event sequences. To enhance semantic fidelity and correct structural inconsistencies, we further incorporate a large language model into an automatic generate evaluate refine loop, which verifies logical, behavioral, and temporal coherence and generates correction rules without manual intervention or environment specific tuning. Through comprehensive experiments with novel evaluation metrics, ADLGen is shown to outperform baseline generators in statistical fidelity, semantic richness, and downstream activity recognition, offering a scalable and privacy-preserving solution for ADL data synthesis.