Abstract:The rapid advancement of quantum computing (QC) and machine learning (ML) has given rise to the burgeoning field of quantum machine learning (QML), aiming to capitalize on the strengths of quantum computing to propel ML forward. Despite its promise, crafting effective QML models necessitates profound expertise to strike a delicate balance between model intricacy and feasibility on Noisy Intermediate-Scale Quantum (NISQ) devices. While complex models offer robust representation capabilities, their extensive circuit depth may impede seamless execution on extant noisy quantum platforms. In this paper, we address this quandary of QML model design by employing deep reinforcement learning to explore proficient QML model architectures tailored for designated supervised learning tasks. Specifically, our methodology involves training an RL agent to devise policies that facilitate the discovery of QML models without predetermined ansatz. Furthermore, we integrate an adaptive mechanism to dynamically adjust the learning objectives, fostering continuous improvement in the agent's learning process. Through extensive numerical simulations, we illustrate the efficacy of our approach within the realm of classification tasks. Our proposed method successfully identifies VQC architectures capable of achieving high classification accuracy while minimizing gate depth. This pioneering approach not only advances the study of AI-driven quantum circuit design but also holds significant promise for enhancing performance in the NISQ era.
Abstract:The high energy physics (HEP) community has a long history of dealing with large-scale datasets. To manage such voluminous data, classical machine learning and deep learning techniques have been employed to accelerate physics discovery. Recent advances in quantum machine learning (QML) have indicated the potential of applying these techniques in HEP. However, there are only limited results in QML applications currently available. In particular, the challenge of processing sparse data, common in HEP datasets, has not been extensively studied in QML models. This research provides a hybrid quantum-classical graph convolutional network (QGCNN) for learning HEP data. The proposed framework demonstrates an advantage over classical multilayer perceptron and convolutional neural networks in the aspect of number of parameters. Moreover, in terms of testing accuracy, the QGCNN shows comparable performance to a quantum convolutional neural network on the same HEP dataset while requiring less than $50\%$ of the parameters. Based on numerical simulation results, studying the application of graph convolutional operations and other QML models may prove promising in advancing HEP research and other scientific fields.
Abstract:This work presents a quantum convolutional neural network (QCNN) for the classification of high energy physics events. The proposed model is tested using a simulated dataset from the Deep Underground Neutrino Experiment. The proposed architecture demonstrates the quantum advantage of learning faster than the classical convolutional neural networks (CNNs) under a similar number of parameters. In addition to faster convergence, the QCNN achieves greater test accuracy compared to CNNs. Based on experimental results, it is a promising direction to study the application of QCNN and other quantum machine learning models in high energy physics and additional scientific fields.