Abstract:Visual place recognition (VPR) is typically regarded as a specific image retrieval task, whose core lies in representing images as global descriptors. Over the past decade, dominant VPR methods (e.g., NetVLAD) have followed a paradigm that first extracts the patch features/tokens of the input image using a backbone, and then aggregates these patch features into a global descriptor via an aggregator. This backbone-plus-aggregator paradigm has achieved overwhelming dominance in the CNN era and remains widely used in transformer-based models. In this paper, however, we argue that a dedicated aggregator is not necessary in the transformer era, that is, we can obtain robust global descriptors only with the backbone. Specifically, we introduce some learnable aggregation tokens, which are prepended to the patch tokens before a particular transformer block. All these tokens will be jointly processed and interact globally via the intrinsic self-attention mechanism, implicitly aggregating useful information within the patch tokens to the aggregation tokens. Finally, we only take these aggregation tokens from the last output tokens and concatenate them as the global representation. Although implicit aggregation can provide robust global descriptors in an extremely simple manner, where and how to insert additional tokens, as well as the initialization of tokens, remains an open issue worthy of further exploration. To this end, we also propose the optimal token insertion strategy and token initialization method derived from empirical studies. Experimental results show that our method outperforms state-of-the-art methods on several VPR datasets with higher efficiency and ranks 1st on the MSLS challenge leaderboard. The code is available at https://github.com/lu-feng/image.
Abstract:Object-context shortcuts remain a persistent challenge in vision-language models, undermining zero-shot reliability when test-time scenes differ from familiar training co-occurrences. We recast this issue as a causal inference problem and ask: Would the prediction remain if the object appeared in a different environment? To answer this at inference time, we estimate object and background expectations within CLIP's representation space, and synthesize counterfactual embeddings by recombining object features with diverse alternative contexts sampled from external datasets, batch neighbors, or text-derived descriptions. By estimating the Total Direct Effect and simulating intervention, we further subtract background-only activation, preserving beneficial object-context interactions while mitigating hallucinated scores. Without retraining or prompt design, our method substantially improves both worst-group and average accuracy on context-sensitive benchmarks, establishing a new zero-shot state of the art. Beyond performance, our framework provides a lightweight representation-level counterfactual approach, offering a practical causal avenue for debiased and reliable multimodal reasoning.




Abstract:Humans naturally share information with those they are connected to, and video has become one of the dominant mediums for communication and expression on the Internet. To support the creation of high-quality large-scale video content, a modern pipeline requires a comprehensive understanding of both the raw input materials (e.g., the unedited footage captured by cameras) and the editing components (e.g., visual effects). In video editing scenarios, models must process multiple modalities (e.g., vision, audio, text) with strong background knowledge and handle flexible input lengths (e.g., hour-long raw videos), which poses significant challenges for traditional models. In this report, we introduce Vidi, a family of Large Multimodal Models (LMMs) for a wide range of video understand editing scenarios. The first release focuses on temporal retrieval, i.e., identifying the time ranges within the input videos corresponding to a given text query, which plays a critical role in intelligent editing. The model is capable of processing hour-long videos with strong temporal understanding capability, e.g., retrieve time ranges for certain queries. To support a comprehensive evaluation in real-world scenarios, we also present the VUE-TR benchmark, which introduces five key advancements. 1) Video duration: significantly longer than existing temporal retrival datasets, 2) Audio support: includes audio-based queries, 3) Query format: diverse query lengths/formats, 4) Annotation quality: ground-truth time ranges are manually annotated. 5) Evaluation metric: a refined IoU metric to support evaluation over multiple time ranges. Remarkably, Vidi significantly outperforms leading proprietary models, e.g., GPT-4o and Gemini, on the temporal retrieval task, indicating its superiority in video editing scenarios.
Abstract:Recent studies show that the visual place recognition (VPR) method using pre-trained visual foundation models can achieve promising performance. In our previous work, we propose a novel method to realize seamless adaptation of foundation models to VPR (SelaVPR). This method can produce both global and local features that focus on discriminative landmarks to recognize places for two-stage VPR by a parameter-efficient adaptation approach. Although SelaVPR has achieved competitive results, we argue that the previous adaptation is inefficient in training time and GPU memory usage, and the re-ranking paradigm is also costly in retrieval latency and storage usage. In pursuit of higher efficiency and better performance, we propose an extension of the SelaVPR, called SelaVPR++. Concretely, we first design a parameter-, time-, and memory-efficient adaptation method that uses lightweight multi-scale convolution (MultiConv) adapters to refine intermediate features from the frozen foundation backbone. This adaptation method does not back-propagate gradients through the backbone during training, and the MultiConv adapter facilitates feature interactions along the spatial axes and introduces proper local priors, thus achieving higher efficiency and better performance. Moreover, we propose an innovative re-ranking paradigm for more efficient VPR. Instead of relying on local features for re-ranking, which incurs huge overhead in latency and storage, we employ compact binary features for initial retrieval and robust floating-point (global) features for re-ranking. To obtain such binary features, we propose a similarity-constrained deep hashing method, which can be easily integrated into the VPR pipeline. Finally, we improve our training strategy and unify the training protocol of several common training datasets to merge them for better training of VPR models. Extensive experiments show that ......




Abstract:Visual place recognition (VPR) aims to determine the general geographical location of a query image by retrieving visually similar images from a large geo-tagged database. To obtain a global representation for each place image, most approaches typically focus on the aggregation of deep features extracted from a backbone through using current prominent architectures (e.g., CNNs, MLPs, pooling layer and transformer encoder), giving little attention to the transformer decoder. However, we argue that its strong capability in capturing contextual dependencies and generating accurate features holds considerable potential for the VPR task. To this end, we propose an Efficient Decoder Transformer (EDTformer) for feature aggregation, which consists of several stacked simplified decoder blocks followed by two linear layers to directly generate robust and discriminative global representations for VPR. Specifically, we do this by formulating deep features as the keys and values, as well as a set of independent learnable parameters as the queries. EDTformer can fully utilize the contextual information within deep features, then gradually decode and aggregate the effective features into the learnable queries to form the final global representations. Moreover, to provide powerful deep features for EDTformer and further facilitate the robustness, we use the foundation model DINOv2 as the backbone and propose a Low-Rank Parallel Adaptation (LoPA) method to enhance it, which can refine the intermediate features of the backbone progressively in a memory- and parameter-efficient way. As a result, our method not only outperforms single-stage VPR methods on multiple benchmark datasets, but also outperforms two-stage VPR methods which add a re-ranking with considerable cost. Code will be available at https://github.com/Tong-Jin01/EDTformer.