Abstract:Despite achieving impressive progress, current multi-label image recognition (MLR) algorithms heavily depend on large-scale datasets with complete labels, making collecting large-scale datasets extremely time-consuming and labor-intensive. Training the multi-label image recognition models with partial labels (MLR-PL) is an alternative way to address this issue, in which merely some labels are known while others are unknown for each image (see Figure 1). However, current MLP-PL algorithms mainly rely on the pre-trained image classification or similarity models to generate pseudo labels for the unknown labels. Thus, they depend on a certain amount of data annotations and inevitably suffer from obvious performance drops, especially when the known label proportion is low. To address this dilemma, we propose a unified semantic-aware representation blending (SARB) that consists of two crucial modules to blend multi-granularity category-specific semantic representation across different images to transfer information of known labels to complement unknown labels. Extensive experiments on the MS-COCO, Visual Genome, and Pascal VOC 2007 datasets show that the proposed SARB consistently outperforms current state-of-the-art algorithms on all known label proportion settings. Concretely, it obtain the average mAP improvement of 1.9%, 4.5%, 1.0% on the three benchmark datasets compared with the second-best algorithm.
Abstract:Multi-label image recognition with partial labels (MLR-PL), in which some labels are known while others are unknown for each image, may greatly reduce the cost of annotation and thus facilitate large-scale MLR. We find that strong semantic correlations exist within each image and across different images, and these correlations can help transfer the knowledge possessed by the known labels to retrieve the unknown labels and thus improve the performance of the MLR-PL task (see Figure 1). In this work, we propose a novel heterogeneous semantic transfer (HST) framework that consists of two complementary transfer modules that explore both within-image and cross-image semantic correlations to transfer the knowledge possessed by known labels to generate pseudo labels for the unknown labels. Specifically, an intra-image semantic transfer (IST) module learns an image-specific label co-occurrence matrix for each image and maps the known labels to complement the unknown labels based on these matrices. Additionally, a cross-image transfer (CST) module learns category-specific feature-prototype similarities and then helps complement the unknown labels that have high degrees of similarity with the corresponding prototypes. Finally, both the known and generated pseudo labels are used to train MLR models. Extensive experiments conducted on the Microsoft COCO, Visual Genome, and Pascal VOC 2007 datasets show that the proposed HST framework achieves superior performance to that of current state-of-the-art algorithms. Specifically, it obtains mean average precision (mAP) improvements of 1.4%, 3.3%, and 0.4% on the three datasets over the results of the best-performing previously developed algorithm.
Abstract:Unpaired image-to-image translation aims to find a mapping between the source domain and the target domain. To alleviate the problem of the lack of supervised labels for the source images, cycle-consistency based methods have been proposed for image structure preservation by assuming a reversible relationship between unpaired images. However, this assumption only uses limited correspondence between image pairs. Recently, contrastive learning (CL) has been used to further investigate the image correspondence in unpaired image translation by using patch-based positive/negative learning. Patch-based contrastive routines obtain the positives by self-similarity computation and recognize the rest patches as negatives. This flexible learning paradigm obtains auxiliary contextualized information at a low cost. As the negatives own an impressive sample number, with curiosity, we make an investigation based on a question: are all negatives necessary for feature contrastive learning? Unlike previous CL approaches that use negatives as much as possible, in this paper, we study the negatives from an information-theoretic perspective and introduce a new negative Pruning technology for Unpaired image-to-image Translation (PUT) by sparsifying and ranking the patches. The proposed algorithm is efficient, flexible and enables the model to learn essential information between corresponding patches stably. By putting quality over quantity, only a few negative patches are required to achieve better results. Lastly, we validate the superiority, stability, and versatility of our model through comparative experiments.
Abstract:Recently many multi-label image recognition (MLR) works have made significant progress by introducing pre-trained object detection models to generate lots of proposals or utilizing statistical label co-occurrence enhance the correlation among different categories. However, these works have some limitations: (1) the effectiveness of the network significantly depends on pre-trained object detection models that bring expensive and unaffordable computation; (2) the network performance degrades when there exist occasional co-occurrence objects in images, especially for the rare categories. To address these problems, we propose a novel and effective semantic representation and dependency learning (SRDL) framework to learn category-specific semantic representation for each category and capture semantic dependency among all categories. Specifically, we design a category-specific attentional regions (CAR) module to generate channel/spatial-wise attention matrices to guide model to focus on semantic-aware regions. We also design an object erasing (OE) module to implicitly learn semantic dependency among categories by erasing semantic-aware regions to regularize the network training. Extensive experiments and comparisons on two popular MLR benchmark datasets (i.e., MS-COCO and Pascal VOC 2007) demonstrate the effectiveness of the proposed framework over current state-of-the-art algorithms.
Abstract:Multi-label image recognition is a fundamental yet practical task because real-world images inherently possess multiple semantic labels. However, it is difficult to collect large-scale multi-label annotations due to the complexity of both the input images and output label spaces. To reduce the annotation cost, we propose a structured semantic transfer (SST) framework that enables training multi-label recognition models with partial labels, i.e., merely some labels are known while other labels are missing (also called unknown labels) per image. The framework consists of two complementary transfer modules that explore within-image and cross-image semantic correlations to transfer knowledge of known labels to generate pseudo labels for unknown labels. Specifically, an intra-image semantic transfer module learns image-specific label co-occurrence matrix and maps the known labels to complement unknown labels based on this matrix. Meanwhile, a cross-image transfer module learns category-specific feature similarities and helps complement unknown labels with high similarities. Finally, both known and generated labels are used to train the multi-label recognition models. Extensive experiments on the Microsoft COCO, Visual Genome and Pascal VOC datasets show that the proposed SST framework obtains superior performance over current state-of-the-art algorithms. Codes are available at https://github.com/HCPLab-SYSU/HCP-MLR-PL.
Abstract:Land remote sensing analysis is a crucial research in earth science. In this work, we focus on a challenging task of land analysis, i.e., automatic extraction of traffic roads from remote sensing data, which has widespread applications in urban development and expansion estimation. Nevertheless, conventional methods either only utilized the limited information of aerial images, or simply fused multimodal information (e.g., vehicle trajectories), thus cannot well recognize unconstrained roads. To facilitate this problem, we introduce a novel neural network framework termed Cross-Modal Message Propagation Network (CMMPNet), which fully benefits the complementary different modal data (i.e., aerial images and crowdsourced trajectories). Specifically, CMMPNet is composed of two deep Auto-Encoders for modality-specific representation learning and a tailor-designed Dual Enhancement Module for cross-modal representation refinement. In particular, the complementary information of each modality is comprehensively extracted and dynamically propagated to enhance the representation of another modality. Extensive experiments on three real-world benchmarks demonstrate the effectiveness of our CMMPNet for robust road extraction benefiting from blending different modal data, either using image and trajectory data or image and Lidar data. From the experimental results, we observe that the proposed approach outperforms current state-of-the-art methods by large margins.
Abstract:Recognizing human emotion/expressions automatically is quite an expected ability for intelligent robotics, as it can promote better communication and cooperation with humans. Current deep-learning-based algorithms may achieve impressive performance in some lab-controlled environments, but they always fail to recognize the expressions accurately for the uncontrolled in-the-wild situation. Fortunately, facial action units (AU) describe subtle facial behaviors, and they can help distinguish uncertain and ambiguous expressions. In this work, we explore the correlations among the action units and facial expressions, and devise an AU-Expression Knowledge Constrained Representation Learning (AUE-CRL) framework to learn the AU representations without AU annotations and adaptively use representations to facilitate facial expression recognition. Specifically, it leverages AU-expression correlations to guide the learning of the AU classifiers, and thus it can obtain AU representations without incurring any AU annotations. Then, it introduces a knowledge-guided attention mechanism that mines useful AU representations under the constraint of AU-expression correlations. In this way, the framework can capture local discriminative and complementary features to enhance facial representation for facial expression recognition. We conduct experiments on the challenging uncontrolled datasets to demonstrate the superiority of the proposed framework over current state-of-the-art methods.
Abstract:Recognizing multiple labels of an image is a practical yet challenging task, and remarkable progress has been achieved by searching for semantic regions and exploiting label dependencies. However, current works utilize RNN/LSTM to implicitly capture sequential region/label dependencies, which cannot fully explore mutual interactions among the semantic regions/labels and do not explicitly integrate label co-occurrences. In addition, these works require large amounts of training samples for each category, and they are unable to generalize to novel categories with limited samples. To address these issues, we propose a knowledge-guided graph routing (KGGR) framework, which unifies prior knowledge of statistical label correlations with deep neural networks. The framework exploits prior knowledge to guide adaptive information propagation among different categories to facilitate multi-label analysis and reduce the dependency of training samples. Specifically, it first builds a structured knowledge graph to correlate different labels based on statistical label co-occurrence. Then, it introduces the label semantics to guide learning semantic-specific features to initialize the graph, and it exploits a graph propagation network to explore graph node interactions, enabling learning contextualized image feature representations. Moreover, we initialize each graph node with the classifier weights for the corresponding label and apply another propagation network to transfer node messages through the graph. In this way, it can facilitate exploiting the information of correlated labels to help train better classifiers. We conduct extensive experiments on the traditional multi-label image recognition (MLR) and multi-label few-shot learning (ML-FSL) tasks and show that our KGGR framework outperforms the current state-of-the-art methods by sizable margins on the public benchmarks.
Abstract:To address the problem of data inconsistencies among different facial expression recognition (FER) datasets, many cross-domain FER methods (CD-FERs) have been extensively devised in recent years. Although each declares to achieve superior performance, fair comparisons are lacking due to the inconsistent choices of the source/target datasets and feature extractors. In this work, we first analyze the performance effect caused by these inconsistent choices, and then re-implement some well-performing CD-FER and recently published domain adaptation algorithms. We ensure that all these algorithms adopt the same source datasets and feature extractors for fair CD-FER evaluations. We find that most of the current leading algorithms use adversarial learning to learn holistic domain-invariant features to mitigate domain shifts. However, these algorithms ignore local features, which are more transferable across different datasets and carry more detailed content for fine-grained adaptation. To address these issues, we integrate graph representation propagation with adversarial learning for cross-domain holistic-local feature co-adaptation by developing a novel adversarial graph representation adaptation (AGRA) framework. Specifically, it first builds two graphs to correlate holistic and local regions within each domain and across different domains, respectively. Then, it extracts holistic-local features from the input image and uses learnable per-class statistical distributions to initialize the corresponding graph nodes. Finally, two stacked graph convolution networks (GCNs) are adopted to propagate holistic-local features within each domain to explore their interaction and across different domains for holistic-local feature co-adaptation. We conduct extensive and fair evaluations on several popular benchmarks and show that the proposed AGRA framework outperforms previous state-of-the-art methods.