Abstract:Federated learning (FL) offers a privacy-preserving paradigm for machine learning, but its application in intrusion detection systems (IDS) within IoT networks is challenged by severe class imbalance, non-IID data, and high communication overhead.These challenges severely degrade the performance of conventional FL methods in real-world network traffic classification. To overcome these limitations, we propose Sentinel, a personalized federated IDS (pFed-IDS) framework that incorporates a dual-model architecture on each client, consisting of a personalized teacher and a lightweight shared student model. This design effectively balances deep local adaptation with efficient global model consensus while preserving client privacy by transmitting only the compact student model, thus reducing communication costs. Sentinel integrates three key mechanisms to ensure robust performance: bidirectional knowledge distillation with adaptive temperature scaling, multi-faceted feature alignment, and class-balanced loss functions. Furthermore, the server employs normalized gradient aggregation with equal client weighting to enhance fairness and mitigate client drift. Extensive experiments on the IoTID20 and 5GNIDD benchmark datasets demonstrate that Sentinel significantly outperforms state-of-the-art federated methods, establishing a new performance benchmark, especially under extreme data heterogeneity, while maintaining communication efficiency.
Abstract:Voice Authentication Systems (VAS) use unique vocal characteristics for verification. They are increasingly integrated into high-security sectors such as banking and healthcare. Despite their improvements using deep learning, they face severe vulnerabilities from sophisticated threats like deepfakes and adversarial attacks. The emergence of realistic voice cloning complicates detection, as systems struggle to distinguish authentic from synthetic audio. While anti-spoofing countermeasures (CMs) exist to mitigate these risks, many rely on static detection models that can be bypassed by novel adversarial methods, leaving a critical security gap. To demonstrate this vulnerability, we propose the Spectral Masking and Interpolation Attack (SMIA), a novel method that strategically manipulates inaudible frequency regions of AI-generated audio. By altering the voice in imperceptible zones to the human ear, SMIA creates adversarial samples that sound authentic while deceiving CMs. We conducted a comprehensive evaluation of our attack against state-of-the-art (SOTA) models across multiple tasks, under simulated real-world conditions. SMIA achieved a strong attack success rate (ASR) of at least 82% against combined VAS/CM systems, at least 97.5% against standalone speaker verification systems, and 100% against countermeasures. These findings conclusively demonstrate that current security postures are insufficient against adaptive adversarial attacks. This work highlights the urgent need for a paradigm shift toward next-generation defenses that employ dynamic, context-aware frameworks capable of evolving with the threat landscape.