Abstract:State space models are emerging as a dominant model class for sequence problems with many relying on the HiPPO framework to initialize their dynamics. However, HiPPO fundamentally assumes data to be noise-free; an assumption often violated in practice. We extend the HiPPO theory with measurement noise and derive an uncertainty-aware initialization for state space model dynamics. In our analysis, we interpret HiPPO as a linear stochastic control problem where the data enters as a noise-free control signal. We then reformulate the problem so that the data become noisy outputs of a latent system and arrive at an alternative dynamics initialization that infers the posterior of this latent system from the data without increasing runtime. Our experiments show that our initialization improves the resistance of state-space models to noise both at training and inference time. Find our implementation at https://cs.cit.tum.de/daml/unhippo.
Abstract:A recent study in turbulent flow simulation demonstrated the potential of generative diffusion models for fast 3D surrogate modeling. This approach eliminates the need for specifying initial states or performing lengthy simulations, significantly accelerating the process. While adept at sampling individual frames from the learned manifold of turbulent flow states, the previous model lacks the capability to generate sequences, hindering analysis of dynamic phenomena. This work addresses this limitation by introducing a 4D generative diffusion model and a physics-informed guidance technique that enables the generation of realistic sequences of flow states. Our findings indicate that the proposed method can successfully sample entire subsequences from the turbulent manifold, even though generalizing from individual frames to sequences remains a challenging task. This advancement opens doors for the application of generative modeling in analyzing the temporal evolution of turbulent flows, providing valuable insights into their complex dynamics.