Abstract:Building subject-independent deep learning models for EEG decoding faces the challenge of strong covariate-shift across different datasets, subjects and recording sessions. Our approach to address this difficulty is to explicitly align feature distributions at various layers of the deep learning model, using both simple statistical techniques as well as trainable methods with more representational capacity. This follows in a similar vein as covariance-based alignment methods, often used in a Riemannian manifold context. The methodology proposed herein won first place in the 2021 Benchmarks in EEG Transfer Learning (BEETL) competition, hosted at the NeurIPS conference. The first task of the competition consisted of sleep stage classification, which required the transfer of models trained on younger subjects to perform inference on multiple subjects of older age groups without personalized calibration data, requiring subject-independent models. The second task required to transfer models trained on the subjects of one or more source motor imagery datasets to perform inference on two target datasets, providing a small set of personalized calibration data for multiple test subjects.
Abstract:Over the last years, many face analysis tasks have accomplished astounding performance, with applications including face generation and 3D face reconstruction from a single "in-the-wild" image. Nevertheless, to the best of our knowledge, there is no method which can produce render-ready high-resolution 3D faces from "in-the-wild" images and this can be attributed to the: (a) scarcity of available data for training, and (b) lack of robust methodologies that can successfully be applied on very high-resolution data. In this work, we introduce the first method that is able to reconstruct photorealistic render-ready 3D facial geometry and BRDF from a single "in-the-wild" image. We capture a large dataset of facial shape and reflectance, which we have made public. We define a fast facial photorealistic differentiable rendering methodology with accurate facial skin diffuse and specular reflection, self-occlusion and subsurface scattering approximation. With this, we train a network that disentangles the facial diffuse and specular BRDF components from a shape and texture with baked illumination, reconstructed with a state-of-the-art 3DMM fitting method. Our method outperforms the existing arts by a significant margin and reconstructs high-resolution 3D faces from a single low-resolution image, that can be rendered in various applications, and bridge the uncanny valley.
Abstract:Patterns of brain activity are associated with different brain processes and can be used to identify different brain states and make behavioral predictions. However, the relevant features are not readily apparent and accessible. To mine informative latent representations from multichannel EEG recordings, we propose a novel differentiable EEG decoding pipeline consisting of learnable filters and a pre-determined feature extraction module. Specifically, we introduce filters parameterized by generalized Gaussian functions that offer a smooth derivative for stable end-to-end model training and allow for learning interpretable features. For the feature module, we use signal magnitude and functional connectivity. We demonstrate the utility of our model towards emotion recognition from EEG signals on the SEED dataset, as well as on a new EEG dataset of unprecedented size (i.e., 763 subjects), where we identify consistent trends of music perception and related individual differences. The discovered features align with previous neuroscience studies and offer new insights, such as marked differences in the functional connectivity profile between left and right temporal areas during music listening. This agrees with the respective specialisation of the temporal lobes regarding music perception proposed in the literature.
Abstract:Recent deep face hallucination methods show stunning performance in super-resolving severely degraded facial images, even surpassing human ability. However, these algorithms are mainly evaluated on non-public synthetic datasets. It is thus unclear how these algorithms perform on public face hallucination datasets. Meanwhile, most of the existing datasets do not well consider the distribution of races, which makes face hallucination methods trained on these datasets biased toward some specific races. To address the above two problems, in this paper, we build a public Ethnically Diverse Face dataset, EDFace-Celeb-1M, and design a benchmark task for face hallucination. Our dataset includes 1.7 million photos that cover different countries, with balanced race composition. To the best of our knowledge, it is the largest and publicly available face hallucination dataset in the wild. Associated with this dataset, this paper also contributes various evaluation protocols and provides comprehensive analysis to benchmark the existing state-of-the-art methods. The benchmark evaluations demonstrate the performance and limitations of state-of-the-art algorithms.
Abstract:The recent advances in 3D sensing technology have made possible the capture of point clouds in significantly high resolution. However, increased detail usually comes at the expense of high storage, as well as computational costs in terms of processing and visualization operations. Mesh and Point Cloud simplification methods aim to reduce the complexity of 3D models while retaining visual quality and relevant salient features. Traditional simplification techniques usually rely on solving a time-consuming optimization problem, hence they are impractical for large-scale datasets. In an attempt to alleviate this computational burden, we propose a fast point cloud simplification method by learning to sample salient points. The proposed method relies on a graph neural network architecture trained to select an arbitrary, user-defined, number of points from the input space and to re-arrange their positions so as to minimize the visual perception error. The approach is extensively evaluated on various datasets using several perceptual metrics. Importantly, our method is able to generalize to out-of-distribution shapes, hence demonstrating zero-shot capabilities.
Abstract:During the COVID-19 coronavirus epidemic, almost everyone wears a facial mask, which poses a huge challenge to deep face recognition. In this workshop, we organize Masked Face Recognition (MFR) challenge and focus on bench-marking deep face recognition methods under the existence of facial masks. In the MFR challenge, there are two main tracks: the InsightFace track and the WebFace260M track. For the InsightFace track, we manually collect a large-scale masked face test set with 7K identities. In addition, we also collect a children test set including 14K identities and a multi-racial test set containing 242K identities. By using these three test sets, we build up an online model testing system, which can give a comprehensive evaluation of face recognition models. To avoid data privacy problems, no test image is released to the public. As the challenge is still under-going, we will keep on updating the top-ranked solutions as well as this report on the arxiv.
Abstract:Tensors, or multidimensional arrays, are data structures that can naturally represent visual data of multiple dimensions. Inherently able to efficiently capture structured, latent semantic spaces and high-order interactions, tensors have a long history of applications in a wide span of computer vision problems. With the advent of the deep learning paradigm shift in computer vision, tensors have become even more fundamental. Indeed, essential ingredients in modern deep learning architectures, such as convolutions and attention mechanisms, can readily be considered as tensor mappings. In effect, tensor methods are increasingly finding significant applications in deep learning, including the design of memory and compute efficient network architectures, improving robustness to random noise and adversarial attacks, and aiding the theoretical understanding of deep networks. This article provides an in-depth and practical review of tensors and tensor methods in the context of representation learning and deep learning, with a particular focus on visual data analysis and computer vision applications. Concretely, besides fundamental work in tensor-based visual data analysis methods, we focus on recent developments that have brought on a gradual increase of tensor methods, especially in deep learning architectures, and their implications in computer vision applications. To further enable the newcomer to grasp such concepts quickly, we provide companion Python notebooks, covering key aspects of the paper and implementing them, step-by-step with TensorLy.
Abstract:Spatial self-attention layers, in the form of Non-Local blocks, introduce long-range dependencies in Convolutional Neural Networks by computing pairwise similarities among all possible positions. Such pairwise functions underpin the effectiveness of non-local layers, but also determine a complexity that scales quadratically with respect to the input size both in space and time. This is a severely limiting factor that practically hinders the applicability of non-local blocks to even moderately sized inputs. Previous works focused on reducing the complexity by modifying the underlying matrix operations, however in this work we aim to retain full expressiveness of non-local layers while keeping complexity linear. We overcome the efficiency limitation of non-local blocks by framing them as special cases of 3rd order polynomial functions. This fact enables us to formulate novel fast Non-Local blocks, capable of reducing the complexity from quadratic to linear with no loss in performance, by replacing any direct computation of pairwise similarities with element-wise multiplications. The proposed method, which we dub as "Poly-NL", is competitive with state-of-the-art performance across image recognition, instance segmentation, and face detection tasks, while having considerably less computational overhead.
Abstract:The Affective Behavior Analysis in-the-wild (ABAW2) 2021 Competition is the second -- following the first very successful ABAW Competition held in conjunction with IEEE FG 2020- Competition that aims at automatically analyzing affect. ABAW2 is split into three Challenges, each one addressing one of the three main behavior tasks of valence-arousal estimation, basic expression classification and action unit detection. All three Challenges are based on a common benchmark database, Aff-Wild2, which is a large scale in-the-wild database and the first one to be annotated for all these three tasks. In this paper, we describe this Competition, to be held in conjunction with ICCV 2021. We present the three Challenges, with the utilized Competition corpora. We outline the evaluation metrics and present the baseline system with its results. More information regarding the Competition is provided in the Competition site: https://ibug.doc.ic.ac.uk/resources/iccv-2021-2nd-abaw.
Abstract:3D face reconstruction from a single image is a task that has garnered increased interest in the Computer Vision community, especially due to its broad use in a number of applications such as realistic 3D avatar creation, pose invariant face recognition and face hallucination. Since the introduction of the 3D Morphable Model in the late 90's, we witnessed an explosion of research aiming at particularly tackling this task. Nevertheless, despite the increasing level of detail in the 3D face reconstructions from single images mainly attributed to deep learning advances, finer and highly deformable components of the face such as the tongue are still absent from all 3D face models in the literature, although being very important for the realness of the 3D avatar representations. In this work we present the first, to the best of our knowledge, end-to-end trainable pipeline that accurately reconstructs the 3D face together with the tongue. Moreover, we make this pipeline robust in "in-the-wild" images by introducing a novel GAN method tailored for 3D tongue surface generation. Finally, we make publicly available to the community the first diverse tongue dataset, consisting of 1,800 raw scans of 700 individuals varying in gender, age, and ethnicity backgrounds. As we demonstrate in an extensive series of quantitative as well as qualitative experiments, our model proves to be robust and realistically captures the 3D tongue structure, even in adverse "in-the-wild" conditions.