Alert button
Picture for Sobha Sivaprasad

Sobha Sivaprasad

Alert button

Spatiotemporal Representation Learning for Short and Long Medical Image Time Series

Add code
Bookmark button
Alert button
Mar 12, 2024
Chengzhi Shen, Martin J. Menten, Hrvoje Bogunović, Ursula Schmidt-Erfurth, Hendrik Scholl, Sobha Sivaprasad, Andrew Lotery, Daniel Rueckert, Paul Hager, Robbie Holland

Figure 1 for Spatiotemporal Representation Learning for Short and Long Medical Image Time Series
Figure 2 for Spatiotemporal Representation Learning for Short and Long Medical Image Time Series
Figure 3 for Spatiotemporal Representation Learning for Short and Long Medical Image Time Series
Figure 4 for Spatiotemporal Representation Learning for Short and Long Medical Image Time Series
Viaarxiv icon

3DTINC: Time-Equivariant Non-Contrastive Learning for Predicting Disease Progression from Longitudinal OCTs

Add code
Bookmark button
Alert button
Dec 28, 2023
Taha Emre, Arunava Chakravarty, Antoine Rivail, Dmitrii Lachinov, Oliver Leingang, Sophie Riedl, Julia Mai, Hendrik P. N. Scholl, Sobha Sivaprasad, Daniel Rueckert, Andrew Lotery, Ursula Schmidt-Erfurth, Hrvoje Bogunović

Viaarxiv icon

Pretrained Deep 2.5D Models for Efficient Predictive Modeling from Retinal OCT

Add code
Bookmark button
Alert button
Jul 25, 2023
Taha Emre, Marzieh Oghbaie, Arunava Chakravarty, Antoine Rivail, Sophie Riedl, Julia Mai, Hendrik P. N. Scholl, Sobha Sivaprasad, Daniel Rueckert, Andrew Lotery, Ursula Schmidt-Erfurth, Hrvoje Bogunović

Viaarxiv icon

Detailed retinal vessel segmentation without human annotations using simulated optical coherence tomography angiographs

Add code
Bookmark button
Alert button
Jun 19, 2023
Linus Kreitner, Johannes C. Paetzold, Nikolaus Rauch, Chen Chen, Ahmed M. Hagag, Alaa E. Fayed, Sobha Sivaprasad, Sebastian Rausch, Julian Weichsel, Bjoern H. Menze, Matthias Harders, Benjamin Knier, Daniel Rueckert, Martin J. Menten

Viaarxiv icon

Morph-SSL: Self-Supervision with Longitudinal Morphing to Predict AMD Progression from OCT

Add code
Bookmark button
Alert button
Apr 17, 2023
Arunava Chakravarty, Taha Emre, Oliver Leingang, Sophie Riedl, Julia Mai, Hendrik P. N. Scholl, Sobha Sivaprasad, Daniel Rueckert, Andrew Lotery, Ursula Schmidt-Erfurth, Hrvoje Bogunović

Figure 1 for Morph-SSL: Self-Supervision with Longitudinal Morphing to Predict AMD Progression from OCT
Figure 2 for Morph-SSL: Self-Supervision with Longitudinal Morphing to Predict AMD Progression from OCT
Figure 3 for Morph-SSL: Self-Supervision with Longitudinal Morphing to Predict AMD Progression from OCT
Figure 4 for Morph-SSL: Self-Supervision with Longitudinal Morphing to Predict AMD Progression from OCT
Viaarxiv icon

Clustering disease trajectories in contrastive feature space for biomarker discovery in age-related macular degeneration

Add code
Bookmark button
Alert button
Jan 11, 2023
Robbie Holland, Oliver Leingang, Christopher Holmes, Philipp Anders, Johannes C. Paetzold, Rebecca Kaye, Sophie Riedl, Hrvoje Bogunović, Ursula Schmidt-Erfurth, Lars Fritsche, Hendrik P. N. Scholl, Sobha Sivaprasad, Andrew J. Lotery, Daniel Rueckert, Martin J. Menten

Figure 1 for Clustering disease trajectories in contrastive feature space for biomarker discovery in age-related macular degeneration
Figure 2 for Clustering disease trajectories in contrastive feature space for biomarker discovery in age-related macular degeneration
Figure 3 for Clustering disease trajectories in contrastive feature space for biomarker discovery in age-related macular degeneration
Figure 4 for Clustering disease trajectories in contrastive feature space for biomarker discovery in age-related macular degeneration
Viaarxiv icon

Metadata-enhanced contrastive learning from retinal optical coherence tomography images

Add code
Bookmark button
Alert button
Aug 04, 2022
Robbie Holland, Oliver Leingang, Hrvoje Bogunović, Sophie Riedl, Lars Fritsche, Toby Prevost, Hendrik P. N. Scholl, Ursula Schmidt-Erfurth, Sobha Sivaprasad, Andrew J. Lotery, Daniel Rueckert, Martin J. Menten

Figure 1 for Metadata-enhanced contrastive learning from retinal optical coherence tomography images
Figure 2 for Metadata-enhanced contrastive learning from retinal optical coherence tomography images
Figure 3 for Metadata-enhanced contrastive learning from retinal optical coherence tomography images
Figure 4 for Metadata-enhanced contrastive learning from retinal optical coherence tomography images
Viaarxiv icon

Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network

Add code
Bookmark button
Alert button
Feb 02, 2017
Jen Hong Tan, U. Rajendra Acharya, Sulatha V. Bhandary, Kuang Chua Chua, Sobha Sivaprasad

Figure 1 for Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network
Figure 2 for Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network
Figure 3 for Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network
Figure 4 for Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network
Viaarxiv icon