Alert button
Picture for Sophie Riedl

Sophie Riedl

Alert button

3DTINC: Time-Equivariant Non-Contrastive Learning for Predicting Disease Progression from Longitudinal OCTs

Add code
Bookmark button
Alert button
Dec 28, 2023
Taha Emre, Arunava Chakravarty, Antoine Rivail, Dmitrii Lachinov, Oliver Leingang, Sophie Riedl, Julia Mai, Hendrik P. N. Scholl, Sobha Sivaprasad, Daniel Rueckert, Andrew Lotery, Ursula Schmidt-Erfurth, Hrvoje Bogunović

Viaarxiv icon

Pretrained Deep 2.5D Models for Efficient Predictive Modeling from Retinal OCT

Add code
Bookmark button
Alert button
Jul 25, 2023
Taha Emre, Marzieh Oghbaie, Arunava Chakravarty, Antoine Rivail, Sophie Riedl, Julia Mai, Hendrik P. N. Scholl, Sobha Sivaprasad, Daniel Rueckert, Andrew Lotery, Ursula Schmidt-Erfurth, Hrvoje Bogunović

Viaarxiv icon

Morph-SSL: Self-Supervision with Longitudinal Morphing to Predict AMD Progression from OCT

Add code
Bookmark button
Alert button
Apr 17, 2023
Arunava Chakravarty, Taha Emre, Oliver Leingang, Sophie Riedl, Julia Mai, Hendrik P. N. Scholl, Sobha Sivaprasad, Daniel Rueckert, Andrew Lotery, Ursula Schmidt-Erfurth, Hrvoje Bogunović

Figure 1 for Morph-SSL: Self-Supervision with Longitudinal Morphing to Predict AMD Progression from OCT
Figure 2 for Morph-SSL: Self-Supervision with Longitudinal Morphing to Predict AMD Progression from OCT
Figure 3 for Morph-SSL: Self-Supervision with Longitudinal Morphing to Predict AMD Progression from OCT
Figure 4 for Morph-SSL: Self-Supervision with Longitudinal Morphing to Predict AMD Progression from OCT
Viaarxiv icon

Clustering disease trajectories in contrastive feature space for biomarker discovery in age-related macular degeneration

Add code
Bookmark button
Alert button
Jan 11, 2023
Robbie Holland, Oliver Leingang, Christopher Holmes, Philipp Anders, Johannes C. Paetzold, Rebecca Kaye, Sophie Riedl, Hrvoje Bogunović, Ursula Schmidt-Erfurth, Lars Fritsche, Hendrik P. N. Scholl, Sobha Sivaprasad, Andrew J. Lotery, Daniel Rueckert, Martin J. Menten

Figure 1 for Clustering disease trajectories in contrastive feature space for biomarker discovery in age-related macular degeneration
Figure 2 for Clustering disease trajectories in contrastive feature space for biomarker discovery in age-related macular degeneration
Figure 3 for Clustering disease trajectories in contrastive feature space for biomarker discovery in age-related macular degeneration
Figure 4 for Clustering disease trajectories in contrastive feature space for biomarker discovery in age-related macular degeneration
Viaarxiv icon

Metadata-enhanced contrastive learning from retinal optical coherence tomography images

Add code
Bookmark button
Alert button
Aug 04, 2022
Robbie Holland, Oliver Leingang, Hrvoje Bogunović, Sophie Riedl, Lars Fritsche, Toby Prevost, Hendrik P. N. Scholl, Ursula Schmidt-Erfurth, Sobha Sivaprasad, Andrew J. Lotery, Daniel Rueckert, Martin J. Menten

Figure 1 for Metadata-enhanced contrastive learning from retinal optical coherence tomography images
Figure 2 for Metadata-enhanced contrastive learning from retinal optical coherence tomography images
Figure 3 for Metadata-enhanced contrastive learning from retinal optical coherence tomography images
Figure 4 for Metadata-enhanced contrastive learning from retinal optical coherence tomography images
Viaarxiv icon

SD-LayerNet: Semi-supervised retinal layer segmentation in OCT using disentangled representation with anatomical priors

Add code
Bookmark button
Alert button
Jul 01, 2022
Botond Fazekas, Guilherme Aresta, Dmitrii Lachinov, Sophie Riedl, Julia Mai, Ursula Schmidt-Erfurth, Hrvoje Bogunovic

Figure 1 for SD-LayerNet: Semi-supervised retinal layer segmentation in OCT using disentangled representation with anatomical priors
Figure 2 for SD-LayerNet: Semi-supervised retinal layer segmentation in OCT using disentangled representation with anatomical priors
Figure 3 for SD-LayerNet: Semi-supervised retinal layer segmentation in OCT using disentangled representation with anatomical priors
Figure 4 for SD-LayerNet: Semi-supervised retinal layer segmentation in OCT using disentangled representation with anatomical priors
Viaarxiv icon

TINC: Temporally Informed Non-Contrastive Learning for Disease Progression Modeling in Retinal OCT Volumes

Add code
Bookmark button
Alert button
Jun 30, 2022
Taha Emre, Arunava Chakravarty, Antoine Rivail, Sophie Riedl, Ursula Schmidt-Erfurth, Hrvoje Bogunović

Figure 1 for TINC: Temporally Informed Non-Contrastive Learning for Disease Progression Modeling in Retinal OCT Volumes
Figure 2 for TINC: Temporally Informed Non-Contrastive Learning for Disease Progression Modeling in Retinal OCT Volumes
Figure 3 for TINC: Temporally Informed Non-Contrastive Learning for Disease Progression Modeling in Retinal OCT Volumes
Figure 4 for TINC: Temporally Informed Non-Contrastive Learning for Disease Progression Modeling in Retinal OCT Volumes
Viaarxiv icon

Modeling Disease Progression In Retinal OCTs With Longitudinal Self-Supervised Learning

Add code
Bookmark button
Alert button
Oct 24, 2019
Antoine Rivail, Ursula Schmidt-Erfurth, Wolf-Dieter Vogl, Sebastian M. Waldstein, Sophie Riedl, Christoph Grechenig, Zhichao Wu, Hrvoje Bogunović

Figure 1 for Modeling Disease Progression In Retinal OCTs With Longitudinal Self-Supervised Learning
Figure 2 for Modeling Disease Progression In Retinal OCTs With Longitudinal Self-Supervised Learning
Figure 3 for Modeling Disease Progression In Retinal OCTs With Longitudinal Self-Supervised Learning
Figure 4 for Modeling Disease Progression In Retinal OCTs With Longitudinal Self-Supervised Learning
Viaarxiv icon

An amplified-target loss approach for photoreceptor layer segmentation in pathological OCT scans

Add code
Bookmark button
Alert button
Aug 02, 2019
José Ignacio Orlando, Anna Breger, Hrvoje Bogunović, Sophie Riedl, Bianca S. Gerendas, Martin Ehler, Ursula Schmidt-Erfurth

Figure 1 for An amplified-target loss approach for photoreceptor layer segmentation in pathological OCT scans
Figure 2 for An amplified-target loss approach for photoreceptor layer segmentation in pathological OCT scans
Figure 3 for An amplified-target loss approach for photoreceptor layer segmentation in pathological OCT scans
Figure 4 for An amplified-target loss approach for photoreceptor layer segmentation in pathological OCT scans
Viaarxiv icon