Abstract:Vision-Language-Action (VLA) models for autonomous driving increasingly adopt generative planners trained with imitation learning followed by reinforcement learning. Diffusion-based planners suffer from modality alignment difficulties, low training efficiency, and limited generalization. Token-based planners are plagued by cumulative causal errors and irreversible decoding. In summary, the two dominant paradigms exhibit complementary strengths and weaknesses. In this paper, we propose DriveFine, a masked diffusion VLA model that combines flexible decoding with self-correction capabilities. In particular, we design a novel plug-and-play block-MoE, which seamlessly injects a refinement expert on top of the generation expert. By enabling explicit expert selection during inference and gradient blocking during training, the two experts are fully decoupled, preserving the foundational capabilities and generic patterns of the pretrained weights, which highlights the flexibility and extensibility of the block-MoE design. Furthermore, we design a hybrid reinforcement learning strategy that encourages effective exploration of refinement expert while maintaining training stability. Extensive experiments on NAVSIM v1, v2, and Navhard benchmarks demonstrate that DriveFine exhibits strong efficacy and robustness. The code will be released at https://github.com/MSunDYY/DriveFine.
Abstract:Vision-Language-Action (VLA) driving augments end-to-end (E2E) planning with language-enabled backbones, yet it remains unclear what changes beyond the usual accuracy--cost trade-off. We revisit this question with 3--RQ analysis in RecogDrive by instantiating the system with a full VLM and vision-only backbones, all under an identical diffusion Transformer planner. RQ1: At the backbone level, the VLM can introduce additional subspaces upon the vision-only backbones. RQ2: This unique subspace leads to a different behavioral in some long-tail scenario: the VLM tends to be more aggressive whereas ViT is more conservative, and each decisively wins on about 2--3% of test scenarios; With an oracle that selects, per scenario, the better trajectory between the VLM and ViT branches, we obtain an upper bound of 93.58 PDMS. RQ3: To fully harness this observation, we propose HybridDriveVLA, which runs both ViT and VLM branches and selects between their endpoint trajectories using a learned scorer, improving PDMS to 92.10. Finally, DualDriveVLA implements a practical fast--slow policy: it runs ViT by default and invokes the VLM only when the scorer's confidence falls below a threshold; calling the VLM on 15% of scenarios achieves 91.00 PDMS while improving throughput by 3.2x. Code will be released.